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A B S T R A C T

Source separation aims to identify and separate the sources from a

given mixture. In music source separation, the sources are typically

musical instruments and the given mixture, a recorded track. When

there is little or no prior information about the sources or recording

conditions, a major goal becomes to target the inherent characteristics

of the sources to help with their differentiation and separation. This

thesis is concerned with methods for doing so, introducing novel ap-

proaches based on signal processing and graph theory techniques.

Kernel Additive Modelling (KAM) is a popular music source sep-

aration framework as it is flexible, computationally efficient and re-

quires no training data. The main idea behind KAM is that one can

use the inherent repetitions of musical signals to reconstruct a source

by defining a proximity kernel. KAM employs robust statistics for

the separation, whose success ultimately depends on the kernel abil-

ity to identify similar instances of a source in the presence of other

overlaying sources. In existing KAM approaches, the kernel design is

rather rudimentary and its simplicity is limiting. In this thesis we in-

vestigate the current kernel and propose novel extensions boosting its

performance without losing interpretability, flexibility or efficiency.

We then explore the inherent graph structure in KAM, leading to

the first unsupervised method to optimise the sole parameter in the

framework. Following this perspective, we further investigate graph

representations, introducing visibility graphs to magnitude spectra.

We present a novel visibility graph-based representation with valu-

able properties for audio. Finally, we propose the first method to

compute visibility graphs on-line, broadening the relevance of this

thesis to generic time series analysis.
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A C R O N Y M S A N D A B B R E V I AT I O N S

BSS Blind Source Separation

CQT Constant-Q Transform
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k-NN k Nearest Neighbours

MSS Music Source Separation

MIDI Musical Instrument Digital Interface
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STFT Short time Fourier Transform

SiSEC Signal Separation Evaluation Campaign
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M AT H E M AT I C A L N O TAT I O N

A(G) Adjacency matrix of graph G

B Set of binary numbers (i.e. 0, 1)

c Temporal context

C Maximum temporal context in time frames

C Set of complex numbers

DKL Kullback-Liebler divergence

d(v) Degree of node v, its value represented as 

d+(v) Out-degree of node v, its value represented as +

d-(v) In-degree of node v, its value represented as -

dE Euclidean distance

dC Cosine distance

E(G) Finite set of edges of graph G

e(G) Size of graph G

f Frequency

F Total number of frequency bins

F Fourier transform

G Graph

H Activation matrix of the training data of unwated source n,

such that: XN ⇡WN ·H
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HN Activation matrix of the unwanted source n, such that:

X ⇡WN ·HN +WS ·HS

HS Activation matrix of target source s, such that:

X ⇡WN ·HN +WS ·HS

h Hubness, skewness of the degree distribution

hNULL Hubness of null model

hnorm Normalised hubness

ht Height of a binary tree

htmax Maximum height of a binary tree

htroot Height of the root of a binary tree

I(f, t) Set of k nearest neighbours of (f, t), such that I(f, t) 2 Lk

IF Inverse Fourier transform

I All-ones matrix of size F⇥ T

J Total number of unknown sources

k-NN k Nearest Neighbours

k Number of nearest neighbours, such that

8(f, t) 2 L, |Ij(f, t)| = k

K Proposed representation related to SVgs

L Set of all TF bins (f, t) such that L = F⇥ T

max( ) Maximum value retrieving function

median( ) Median operator

n Unwanted source/interference

N STFT of unwanted source, N its magnitude, N̂ its estimate

nHMM Unwanted source state vector: 1 if active, 0 if not.

n(G) Order of graph G
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n Number of nodes with degree 

P Pruning parameter indicating the number of additional

nearest neighbours

P() Degree distribution

~p Degree distribution vector of a graph

qf Quefrency

R Set of real numbers

R+ Set of positive real numbers

R1, R2 Rank values parameters of NMF

s Target source

S STFT of target source, S its magnitude, Ŝ its estimate

Sq CQT of target source, Sq its magnitude, Ŝq its estimate

ŜNMF NMF Source estimate such that ŜNMF := WS ·HS

t Time, time frame

T Total number of time frames

THMM Threshold symbolising the parameters of a HMM

V(G) Finite set of vertices, or nodes, of graph G

v Node or vertix

W Mask used for separation, e.g. Ŝ = W �X

WN Basis matrix for training data of unwated source n, such that:

XN ⇡WN ·H

WS Basis matrix of target source s, such that:

X ⇡WN ·HN +WS ·HS

x Observed mixture of sources x =
JP

j=1

sj, here x = s+n
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X STFT of mixture, X its magnitude

Xq CQT of mixture, Xq its magnitude

Xs Specmurt of mixture, Xs its magnitude and X 0s its reduced

version

y Time series such that y = g(t)

Y STFT of time series y, Y its magnitud.

z Spectrum, z its magnitude

↵ Quefrency broadband cut-off point

�, � Auxiliary variables and parameters

� Shift parameter in the kernel measured in frequency bins

� Absolute maximum frequency shift

 Value of the degree of a node d(v)

~ Degree vector of a graph

� Number of channels in a mixture x



Part I

F R A M I N G T H E T H E S I S

This first part presents the motivation and layout of this

thesis, as well as the published work relevant to the disser-

tation. A brief background on the field and fundamental

concepts of source separation will also be outlined.



1
I N T R O D U C T I O N

In recent decades, digital music signal processing has revolutionised

the way we create, consume and produce music. The digital era opened

a door for music analysis and processing that was unimaginable be-

fore, introducing new exciting ways of understanding and working

with musical sounds. A new field of research emerged; how can we

make machines understand music as we do?

Now we are able to automatically generate a playlist tailored to

your music taste, to use a mobile phone to listen and recognise songs,

to automatically mix a multitrack recording, to up-mix old records

into surround sound, to automatically transcribe music and much

more. None of these applications would be possible without the ex-

tensive research on the large variety of digital music signal processing

core tasks.

Sound source separation is one of the core tasks in many audio

applications [19, 92, 109] such as de-noising or up-mixing [42, 137]. In

the common blind source separation scenario, the goal is to extract a

source from a given mixture of sources, with little or no information

about the sources. In this thesis we will explore and expand some

existing methods for music source separation and introduce a new

perspective through graph theory tools.

1.1 motivation

The current state-of-the-art in music source separation methods em-

ploy machine learning techniques, typically variants of Non-Negative

Matrix Factorisation (NMF) [76] and in recent years, based on Deep

Neural Networks (DNNs) [127]. DNNs have both objectively and

17



1.1 motivation 18

audibly drastically improved separation results, shadowing model-

based approaches unable to compete in separation performance [125].

Even though one could question the flexibility of these approaches, as

they heavily rely on the quality and diversity of their training data,

they are beyond doubt raising the standard for source separation ap-

plications regardless of the major interpretability cost from such a

black-box approach. Led by impressive results, the sound source sep-

aration community is converging towards DNN-based solutions, ac-

companied by a change in paradigm.

Despite this overwhelming trend, modelling continues to play a

key role in the community as it essentially brings the interpretabil-

ity which DNN approaches lack. Model-based methods provide us

with valuable insights on the behaviour and interaction of musical

signals, widening the creative space of reflection, mother to future

ideas. Here we argue that modelling and machine learning respond

to different, yet all relevant, questions towards a shared goal; in short

DNNs care about performance, and models about behaviour knowl-

edge. Therefore, these two approaches are not exclusive, but in fact,

complementary.

In this thesis we will focus on interpretable model-based methods

for source separation and on their computational efficiency. The ma-

jority of the proposed methods in this thesis are computationally in-

expensive and could be implemented to run real-time. Further, we

provide alternatives for those methods which are heavier to com-

pute. The low computational cost of the methods presented brings

an added advantage of low requirements. None of the methods pre-

sented in this thesis require particular machine specifications nor

large data-sets, and are therefore accessible to a wide range of re-

searchers. In addition, source code is freely available online 1. We

appoint efficiency and accessibility as the driving forces of this the-

sis.

1 Source code available at https://github.com/delialia

https://github.com/delialia
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1.2 layout

The thesis is divided into four parts. This first one aims to introduce

the reader into the field of music source separation with a literature

review in Chapter 2 giving enough grounding and pointers for the

rest of the thesis.

The second part is mainly concerned with the so-called Kernel

Additive Modelling (KAM) framework for music source separation

which is fully defined in Chapter 3. In Chapter 4 we explore KAM’s

limitations and propose different extensions under problematic sce-

narios were KAM is likely to fail.

In the third part of the thesis we shift in perspective by introduc-

ing graph theory concepts to our framework in Chapter 5. We then

take a step further and explore the potential of graph representation

for audio applications by introducing visibility graphs to spectra in

Chapter 6. In addition, we present the first algorithm capable of com-

puting visibility graphs on-line while maintaining the state-of-the-art

efficiency, relevant to any time series and so, widening the outreach

of this thesis.

Finally we briefly outline in Chapter 7 some of the possible research

lines derived from this thesis and conclude in Chapter 8 with the key

aspects of this dissertation.

1.3 contributions

The contributions of this thesis expand and improve kernel additive

modelling for music source separation [82]. We focus on the popular

kernel choice of k nearest neighbours (k-NN) commonly applied to

vocal separation tasks [41, 108]. We expand its use, for the first time,

to interference reduction applications, where the music signal is over-

laid by a transient burst-like unwanted sound, like a cough in a live

recording.
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The popular k-NN kernel relies on the following strong assump-

tions:

• The target source is energetically dominant

• The target source repeats in time and frequency

Such assumptions are often violated in music signals and so, in this

thesis we address such limitations by:

• introducing a temporal context in the kernel, taking some mu-

sical structure into account

• differentiating the kernel search space from the processing space

• proposing a shift-invariant kernel capable of identifying similar

spectral content even under frequency shifts

• integrating machine learning in the framework to overcome low

signal-to-interference ratio by:

– locating the interference activation in the recording

– incorporating an initial estimate of the clean music signal

as a search space

In addition we address the influence and optimisation of the sole

parameter of the framework for the first time by:

• exploiting and defining the graph structure in KAM

• proposing a method to automatically optimise k in a vocal sep-

aration task

• discussing the influence and importance of such parameter

We then further explore the translation to graph domain of music

signals, offering a novel perspective by:

• introducing visibility graphs to audio spectra

• proposing a novel graph-based representation for audio analy-

sis: the spectral visibility graph degree
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• demonstrating its utility to measure robust similarity between

harmonic signals

In addition, we propose a novel method to compute visibility graphs

efficiently that is, for the first time, capable of assimilating incoming

data on-line by:

• using an encoder/decoder approach, defining :

– an on-line adjustable binary search tree encoder for time

series

– a corresponding decoder for visibility graphs

Our proposed method for computation of visibility graphs offers an

on-line computation solution at no additional computation time cost,

and allows to employ visibility graphs in the analysis of large-scale

time series and for the on-line assimilation of new data.

1.4 publications

Most of the main contributions of this thesis have been peer-reviewed

and published. Therefore, some of the ideas and figures in this thesis

are also discussed in published work, as follows:

• In Chapter 4: Section 4.2 [4], Section 4.3 [5] and Section 4.4 [3].

• In Chapter 5 : Section 5.3 [1].

• In Chapter 6 : Section 7.1 [2] and Section 6.3 [6].

[1] Delia Fano Yela, Dan Stowell, and Mark Sandler. “Does k Mat-

ter? k-NN Hubness Analysis for Kernel Additive Modelling

Vocal Separation”. In: International Conference on Latent Variable
Analysis and Signal Separation. Springer. 2018, pp. 280–289. url:

https://link.springer.com/chapter/10.1007/978-3-319-

93764-9_27.

[2] Delia Fano Yela, Dan Stowell, and Mark Sandler. “Spectral Vis-

ibility Graphs: Application to Similarity of Harmonic Signals”.

https://link.springer.com/chapter/10.1007/978-3-319-93764-9_27
https://link.springer.com/chapter/10.1007/978-3-319-93764-9_27
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In: Proceedings of the European Signal Processing Conference (EU-
SIPCO). 2019. url: https://arxiv.org/pdf/1903.01976.

[3] Delia Fano Yela, Sebastian Ewert, Derry FitzGerald, and Mark

B. Sandler. “Interference Reduction in Music Recordings Com-

bining Kernel Additive Modelling and Non-Negative Matrix

Factorization”. In: Proceedings of the IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP). New

Orleans, USA, 2017, pp. 51–55. url: https : / / ieeexplore .

ieee.org/document/7952116.

[4] Delia Fano Yela, Sebastian Ewert, Derry Fitzgerald, and Mark

Sandler. “On the Importance of Temporal Context in Proximity

Kernels: A Vocal Separation Case Study”. In: Audio Engineering
Society Conference: 2017 AES International Conference on Seman-
tic Audio. 2017. url: http://www.aes.org/e-lib/browse.cfm?

elib=18752.

[5] Delia Fano Yela, Sebastian Ewert, Ken O’Hanlon, and Mark

B. Sandler. “Shift-Invariant Kernel Additive Modelling for Au-

dio Source Separation”. In: Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP).
Calgary, AB, 2018, pp. 616–620. url: https :/ / ieeexplore .

ieee.org/document/8461801.

[6] Delia Fano Yela, Florian Thalmann, Vincenzo Nicosia, Dan

Stowell, and Mark Sandler. “Online visibility graphs: Encod-

ing visibility in a binary search tree”. In: Physical Review Re-
search (forthcoming) (2020).

https://arxiv.org/pdf/1903.01976
https://ieeexplore.ieee.org/document/7952116
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2
B A C K G R O U N D

In this chapter the field of source separation is introduced, alongside

the main concepts and standards in the community. It is to serve as

an introduction for the newcomers and as a pointer for those with

curiosity. For ease of reading, the mathematical notations and defini-

tions of the relevant state-of-the-art will be described in detail later in

the dissertation suiting the scientific content.

2.1 what is source separation and why is it useful?

Source separation is the discipline aiming to extract individual sources

from a given time series mixture of different sources. Being able to

estimate the contribution of a target source at a certain time has

proven to be decisive in numerous fields including medicine, finance,

telecommunications and engineering [21]. The nature of the sources

and mixture will vary depending on which field the problem is de-

fined. For example, source separation techniques are used to monitor

the vibrations in rotors to control and prevent fault functioning, like

rotating out of axis, that could have deep consequences [62]. Source

separation has also been widely used as a denoising tool, notably

to remove electroencephalographic artifacts [63, 130] or to enhance

speech signals [107, 133], as well as an analysis tool in, for example,

natural language processing applications [138].

In sound source separation (SSS), the sources are sound objects (i.e.

anything producing a sound, from musical instruments to environ-

mental sounds) and the mixture is typically a recording of such sound

objects. As a peek of the diversity of applications within the vast SSS

field, some have found its utility in the analysis of environmental and

animal sounds, popular in the emerging field of acoustic scenes and

23
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Mixture, x

Vocals

Bass

Drums

Other

0 1 2 3 4 5 6 7 8 9 10 11 12

Time [secs]

Figure 1: Illustration of a mixture of sources and its source components
waveforms in the time domain

events detection and classification [128], as well as in bioacoustic tasks

such as separating chimpanzee’s drummings from vocalizations [56].

However, speech applications have been the driving force of SSS re-

search in the last decades, leading telecommunications technologies

[51, 133].

Even though much of the sound source separation research has in-

deed been driven by speech related tasks, the interest in music source
separation (MSS) has considerably increased in the last decade tak-

ing the music industry to a new level of applications possibilities in

which the different sound objects can be manipulated individually.

Having the ability to remove an instrument from a musical recording

has, for example, helped students to practice in the context of an en-

semble by playing along the remaining instrument of the recording

[16]. Further, MSS has also found successful applications in automatic

music transcription systems as transcribing instruments in isolation

benefits the overall performance [7, 99] in the same way it benefits

instrument classification tasks [6]. MSS has also been recently em-

ployed to assist automatic mixing, as it allows to adjust individual

instruments [91] and found a real-world application in the upmixing

of mono recordings to stereo [42].
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In music source separation, the sound sources are the ones typi-

cally found on a music recording set-up, such as musical instruments

or audience noise. Figure 1 illustrates a given time series mixture and

the different sound components in it. Within this thesis, the sources

are taken to be in a specific sound field (i.e. acoustic conditions do

not change over time) and only the measurement of the effect of the

ensemble will be observable. Such scenario, where there is no infor-

mation about the individual sources (such as their placement or num-

ber) other than their joint effect, is known as a blind source separation
(BSS) problem.

2.2 how to separate sources?

The diverse methods to obtain the estimate of the isolated unknown

sources depend on different factors, such as the assumptions on the

sources (statistically independent, uncorrelated temporally ...), the

measurement conditions (number or microphones, spacing between

them ...), the processing domain (time, frequency ...) or the number

of measurements available compared to the number of sources (de-

termined, overdetermined or underdetermined problem). This thesis

will focus on the underdetermined scenario in which the number of

observable mixtures is less than the number of sources.

Unlike the typical speech enhancement scenario where strong as-

sumptions can safely be made on the observable mixture, such as

the independence of the source signals, musical sources are highly

correlated and often non-linearly mixed [21]. Therefore, in a music

source separation scenario, most of the assumptions of the well estab-

lished speech separation methods such as independent component

analysis (ICA) [60] are violated and hence not suitable for music sig-

nals [103]. In response, multiple music specific source separation al-

gorithms have been proposed in recent decades [19].

Following the description in [19] illustrated in Figure 2, a typical

music source separation (MSS) workflow starts by transforming the

input mixture signal x to the time-frequency (TF) domain. Most of

MSS research has focused on the short-time Fourier transform (STFT),
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ŷj

X Ŝj
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Figure 2: Illustration of the common music source separation workflow as
described in [19].

X 2 CF⇥T , where T is the total number of time frames and F the num-

ber of frequency bins. It is common to discard the phase information

by employing the magnitude spectrogram X 2 RF⇥T
+ , as it will be

further discussed in section 2.3.

In the next step referred to as source modelling in [19], the TF repre-

sentation is used to model the individual sources in the mixture by

either estimating a model of their spectrograms or of their locations

in the sound field. Given the input mixture x constituted by J musical

sources sj with j 2 1 ... J, the estimates of the magnitude spectrogram

of the sources Ŝj 2 RF⇥T
+ are obtained at this stage.

Such estimates are then used in the filtering stage to retrieve the

separated music source signals, usually, through soft-masking [19].

For every source j, the complex mixture spectrogram X is weighted

by a mask. Commonly a generalised Wiener filter [30] recovers the

source Ŝj 2 CF⇥T through the following element-wise multiplication:

Ŝj =
Ŝj

P
J

i=1
Ŝi

�X 8j 2 {1 ... J} (1)

when the mixture is assumed to be a linear sum of independent

sources.

To improve the source estimates one can iterate over the source

modelling and filtering stages, using the output source estimates as

input "mixtures" of the next iteration [19, 82, 84]. Ultimately, the time

domain source estimate signals ŝj are obtained through the inverse

TF transform, usually the inverse short-time Fourier transform. The

TF transformation and filtering stages are often similar amongst MSS

methods, and is the source modelling stage that differs.
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In order to isolate the musical sources with little or no informa-

tion about them or the sonic environment involved in the recording,

some methods make use of the multichannel information such as dif-

ference in phase or panning of sources [46, 77, 96, 101]. In this case

the mixture x can be described as a set of � time series where � is the

total number of channels (e.g. � = 2 for stereo) and so the STFT of

the input mixture can be viewed as a tensor X 2 CF⇥T⇥� . However,

when only one channel is actually available, one can no longer exploit

spatial information. In addition, such information is often unreliable

due to the use of various non-linear sound effects yielding artificial

sound scenes which cannot physically be reproduced and are difficult

to model [109]. Therefore, this thesis focuses on single-channel source
separation methods.

In this context, the goal becomes to find characteristics helping with

the definition, identification and separation of the individual sources,

which can be either modelled explicitly or learned from data. Model
based approaches exploit characteristics of the sources for their sepa-

ration by explicitly including them in the model. For example, music

signals are likely to follow a melody, so some methods include the

score information (given or issued from a transcription stage) in their

pipeline to inform the separation [35, 36, 49, 57]. Following the same

logic, one could assume the musical source of interest to be harmonic

and then use a pitch tracker to aid with the separation. Some have pro-

posed to use sinusoidal modelling to implement an analysis-synthesis

approach where the source of interest is estimated and synthesised

using the pitch information from the initial transcription stage [117,

118]. Others propose to take a comb filter approach by expanding the

pitch information with an a priori harmonic expectation of the target

source [15].

It is not uncommon to involve the user in the process to gain knowl-

edge of the target source. For example, some have involved the user

as a precise way to select relevant information for the algorithm, such

as where is the target source present [44] or which is the fundamen-

tal frequency of the target source [31]. Other approaches rely on the

user to hum [122] or play [40] the target source to assist with the sep-

aration. Even though these approaches have successfully included in-
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formation about the sources in the form of prior knowledge, they all

depend on a preliminary step which does not guarantee an improve-

ment in the separation performance as they often rely on the user

knowledge of the proposed representation [120] or on assumptions

that are not always met (e.g. pitch trackers often assume the source

of interest to be the loudest harmonic sound in the mixture).

As an alternative, other model-based approaches target directly the

inherent characteristics of the source of interest. Such characteristics

can include various acoustical or perceptual aspects, including the

typical behaviour of a source in time such as vibrato [28, 29], continu-

ity in activity [8, 134], repetitiveness of patterns [41, 108], or spectral

characteristics such as broadband vs harmonic energy distribution

[24, 39, 45]. Such approaches are quite popular in the field as they

tend to be quite inexpensive in terms of both computation and knowl-

edge required. This methodology ease comes at performance cost as

the models of these methods usually rely on core assumptions about

the sources that could be violated by the signal under study.

On the other hand, machine learning methods aim to avoid such lim-

itation by simply not making any strong assumptions on the sources.

Instead, a large and representative database of examples is needed

to "learn" the model and its vast number of parameters. Currently,

most state-of-the-art methods lie within this context and are based

on either Non-Negative Matrix Factorisation (NMF) [100, 113, 123] or

Deep Neural Networks (DNN) [52, 58].

Based on generalised Wiener filtering, NMF aims to model a time-

frequency representation of the mixture X 2 RF⇥T
+ as a product of two

non-negative matrices W 2 RF⇥R
+ and H 2 RR⇥T

+ , such that X ⇡WH,

where rank R is the parameter of the method. The goal is to minimise

the error of reconstruction defined by a cost function of choice (e.g.

Frobenius norm ||X-WH||F) [75, 76].

The basic idea in the context of MSS is that, after convergence, the

first matrix W should encode the essence of the different sources and

the second matrix H their activation in the mixture. It is so that, the

columns of W are often interpreted as "templates" capturing the spec-

tral properties of the individual sound sources in the signal; the rows
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of H are often referred to as the corresponding "activations", encod-

ing when and how strong each template is active in the input signal

[121].

In a complex musical scenario, the sources are hard to model with

a fixed number of templates and will often share spectral proper-

ties, and thus applying the original NMF approach [76] was found to

rarely yield useful results [43]. Therefore, various extensions were

proposed integrating various constraints on the parameter estima-

tion process. Examples include sparsity and temporal continuity con-

straints [134] or harmonicity constraints [8]. Further, various types of

side information have been used, such as user-assisted annotations

[120] and musical score information [36].

Alternatively, one of the most widely used and successful approaches

is to employ training data. Supervised and semi-supervised NMF

methods "learn" the spectral templates of the target source and use

those to determine the activation of such in the mixture [20]. This way,

one can avoid relying on specific assumptions about the statistical in-

dependence of the sources [1]. As a major drawback of this approach,

however, the quality of the separation result heavily depends on the

assumption that the acoustical conditions in the training material and

in the recording to be processed are similar. The more this assump-

tion is violated, the more artefacts are to be expected.

To overcome NMF drawbacks, recent methods propose DNNs as

means to learn the relation between the time-frequency representa-

tion of the mixture and the source of interest [52, 53, 78]. In short,

DNNs can be understood as a combination of non-linear transforma-

tions learnt from the dataset of examples reserved for training. DNNs

are typically trained on the magnitude spectrogram of the mixture

to predict either a time-frequency mask describing the energy dis-

tribution of a source relative to the other sources [95] or the source

spectrogram directly [58, 96]. Most of the methods differ either in the

network architecture or its training fashion.

Even though machine learning methods have different trade-offs

with respect to run-time, separation quality and adaptability to new

acoustic conditions, DNNs have, beyond doubt, remarkably improved



2.2 how to separate sources? 30

separation performance, becoming the new standard in the field [125,

127]. Such a success has attracted multitude of researchers display-

ing an overwhelming increase of interest in the last years (compar-

ison between [2] and [125]). However in order to achieve outstand-

ing performance improvements, learning-based approaches must be

used in settings where large amounts of training material are avail-

able: otherwise their flexibility and adaptability could be questioned

as their methods are typically trained for specific combinations of

instruments or instruments groups [96]. Therefore it comes as no sur-

prise that such approaches have been often promoted by large corpo-

rations with access to the large audio datasets required for a flexible,

adaptable and successful training. The best performing algorithm of

the latest source separation evaluation campaign [125] is DNN based

and used an additional extensive private dataset [52]. However, the

recently released "reference implementation for music source separa-

tion" Open-Unmix [127] is trained on the publicly available MUSDB18

dataset of only 100 songs and claims to match such state-of-the-art;

maybe opening the door to the new standard in music source separa-

tion as the authors did release all their pre-trained model and source

code with supporting material as open software for the benefit of the

community. Nonetheless, the multitude of adjustable parameters is

often viewed as an unavoidable shortcoming leading to a daunting

tuning task reinforcing the lack of interpretability of DNN-based sys-

tems.

Consequently, despite a measurable difference in performance, in-

terest in "learning-free" methods remains high. A focus on explicitly

modelling concepts increases the interpretability of methods, which

opens more angles for including prior knowledge, which might help

with understanding how machine learning methods operate and can

lead to a high generalisation capacity across datasets. Therefore, in-

stead of training a model, one could just target the inherent proper-

ties of the sources directly by taking advantage of their differences in

the separation process. In this context, a number of methods exploit

these differences by relying on a similarity measure that will accentu-

ate the target source in the mixture [39, 41, 106, 108]. Such methods

are based on median filtering and can be considered instances of the

general framework know as Kernel Additive Modelling (KAM) [82].
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KAM is a flexible time-frequency domain framework able to sepa-

rate sound sources at a low computational cost. The main idea behind

KAM relies on the assumed repetition of sound events in musical sig-

nals, by defining a proximity kernel function which detects these rep-

etitions and so identifies similar spectral bins for the sources we want

to keep while ignoring the energy associated with other sources. Since

some of the kernel bins might be overlaid by other sounds as well, or

are not exact repetitions, KAM employs order statistics to identify

the commonalities between the bins while neglecting the outliers. In

other words, KAM reconstructs the magnitude for a given source by

analysing the values at the locations where the target source is likely

to assume similar values.

From a modelling point of view, the core idea of KAM is related to

the more widely known Gaussian Processes (GP) [80]. In both cases,

one assumes that individual entries correlate with others in a known

way, and so if we can observe the value of one entry, we can make

a statement about the value of related entries. This means that for

many signals we can estimate the value of a single sample by look-

ing at the value of neighbouring (or similar) samples. For example,

similarly to a low-pass FIR filter [92], we can take the average of the

values of neighbouring samples to reconstruct a low frequency sig-

nal corrupted by white noise. KAM and GP take a step further by

enabling much more general notions of similarity or neighbourhood.

KAM differs from GP in several aspects. The GP framework is for-

mulated as an inference problem, where usually a covariance matrix

defined by a kernel function is updated based on the observed data.

The relationship between random variables, as well as the noise, must

be Gaussian and the kernel function is restricted to lead to positive

semi-definite covariance matrices. The inference process involves the

inversion of such matrix and renders the method computationally

expensive, yet highly adaptable and expressive. In KAM, inference

does not exist in such form as the kernel depends on the actual obser-

vations themselves, introducing the use of outlier resistant methods

from robust statistics which allows for non-Gaussian relationships

and modelling of non-Gaussian noise [82]. In addition, such kernel,
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while limiting its expressiveness, drastically improves the computa-

tional performance.

The high interpretability and flexibility of KAM explains its increas-

ing popularity in the field, offering a quick blind source separation

approach to a multitude of applications [39, 82, 107, 108]. However, in

existing KAM approaches, the proximity kernel design is often rather

rudimentary, offering a natural starting point for this thesis, which

starts by investigating different kernel designs under problematic sce-

narios were KAM is likely to fail in Chapter 4. KAM framework will

therefore be introduced in more detail in the following Chapter 3.

2.3 audio representations for source separation

Most methods for audio source separation use a time-frequency (TF)

representation (2D) of the given time domain waveform (1D), illustrat-

ing the spectrum of frequencies over time. In the TF domain, the indi-

vidual characteristics of the sources become more apparent as there

is less overlap between sources than in its associated time domain

waveform, and so better suited for a source separation task (compare

Figure 1 with Figure 3).

The short-time Fourier transform (STFT), represented in Figure 3,

is the most commonly used transformation to the TF domain because

it is efficient and because the resulting complex spectrogram is linear

and invertible. This means that a sum of sources in the time domain

(t) corresponds to a sum of the STFT of the sources, and that any

modification in such domain will modify the time domain waveform

after inversion. Therefore, given a linear mixture x(t) of sources sj(t),

such that

x(t) =
JX

j=1

sj(t) (2)

their corresponding STFTs X and Sj 2 CF⇥T also hold such relation

X =
JX

j=1

Sj. (3)
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In practice, most audio source separation techniques actually op-

erate on the magnitude spectrogram and assume the phase of the

sources to be equal to that of the mixture and disregard the phase in-

formation in the estimation process (with some exceptions [17]). The

ease of operating on the real versus the complex domain comes, how-

ever, at an audible cost. Therefore, research for alternatives on how to

reconstruct or work with the phase of a STFT spectrogram has been

developed.

The reference approach to reconstruct the phase from a modified

magnitude STFT spectrogram is the Griffin-Lim algorithm [54]. This

iterative approach aiming to find the closest consistent STFT spec-

trogram (that of a real signal) to a given magnitude spectrogram is

however slow and thus a faster alternative was proposed [72, 73]. In-

stead of using consistency, others propose to use frequency and time

coherence of partials to reconstruct the phase [86] or to work on the

complex domain directly [23] or, of late, thanks to the recent advances

in deep learning, to avoid TF representations entirely by staying in the

time domain with end-to-end architectures [124].

Despite these short-comings, the magnitude STFT spectrogram re-

mains the usual TF representation of choice in music source sepa-

ration methods [92]. Further, in a linear mixing problem (i.e. the

time waveforms of the sources add to the given mixture waveform

expressed in Equation (2.3)), it is common to assume that the magni-

tude STFT spectrograms of the sources add up to the given magni-

tude STFT spectrogram of the mixture [19], such that

X ⇡
JX

j=1

Sj. (4)

Even though this is not strictly the case, as it is for the complex

spectrograms, the ease this assumption introduces to model-based

approaches is often worth the degradation of audio quality it gener-

ates.

Alternative TF representations have been presented with a logarith-

mic frequency resolution, notably the constant Q transform (CQT)

[12], represented in Figure 4. This representation is advantageous

for music applications as a log-frequency spectrogram can be set to
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Figure 3: Magnitude short-time Fourier transform (STFT) of a given mixture
and a representation of each source contribution color coded as in
Figure 1.
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Figure 4: Magnitude constant Q transform (CQT) of a given mixture and a
representation of each source contribution color coded as in Figure
1.
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match the equal tempered western music scale, where the ratio be-

tween adjacent note’s frequency is constant.

In the STFT, the frequency distance and resolution is constant and

dictated by setting a fixed window size. In the CQT, the length of

the window varies with frequency, as what is now fixed is the ratio

between the centre frequency to bandwidth, known as Q. In other

words, in a CQT the ratio between the centre frequency and resolu-

tion is constant, whereas in the STFT the resolution is constant.

Unfortunately, the CQT is computationally expensive, in particu-

lar where the initial minimum frequency is low as it requires a large

window size, and it was at first not invertible [22], although recent

advances have shown otherwise [114]. It remains, however, a less pop-

ular TF representation choice compared to the STFT.

Even though in TF representations the difference between sources

is more apparent than in the time domain signal, the two dimensional

discrete Fourier transform (2D-DFT) domain has been found more

appropriate to model non-stationary sound objects (e.g. those exhibit-

ing vibrato) [126] and to distinguish periodic from non-periodic pat-

terns applied to singing voice extraction [115]. In particular, the 2D-

DFT gives an excellent alternative representation for unison mixtures

where the sources clearly overlap in the standard STFT representation

[102, 126].

2.4 tasks in music source separation

Music source separation algorithms aim to isolate a target source

from the mixture. However, due to the challenging nature of the prob-

lem, what defines the target source is remarkably relaxed. Instead

of targeting the entire sound produced by a particular object, like a

flute or drum, music source separation algorithms target the most

prominent characteristics of those sound objects, like its harmonic or

percussive nature. Musical sound objects are generally divided into

three categories: harmonic, percussive or vocal; culminating in two
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main separation tasks: harmonic/percussive separation and vocal or

lead/accompaniment separation.

Harmonic sources present a stationary behaviour over time, dis-

playing horizontal lines in the TF domain (see bass in green in Figures

3 and 4). Such harmonic sound is mainly composed by a fundamental

frequency (usually assumed to be the one with greater power) and its

harmonic components whose frequencies are multiples of the funda-

mental. Further, the harmonics and fundamental frequencies are said

to have "common fate" as their trajectories in time are often aligned

[11]. Such phenomenon has been exploited in the past to aid with the

separation of unison mixtures [102, 126].

On the contrary, percussive sources are considered to be transient

broadband events appearing as vertical ridges in the TF domain (see

drums in green in Figures 3 and 4). Percussive music sources are also

assumed to be repetitive and even periodic as they usually mark the

beat in the given song mixture [39].

In the same way, the accompaniment music tends to be more repet-

itive than the lead in a standard popular song, and so some methods

have exploited such difference to extract vocals from the mixture [41,

106, 108]. Vocals are considered to be a particular non-stationary and

sparse harmonic source (see vocals in blue in Figure 3 and 4). Such

characteristics are hard to model and so most methods target the

background music and treat the vocals as residual.

In this thesis a novel music source separation task is presented,

including the audience noise interferences as a category of sound ob-

jects found in a live musical recording: interference reduction. Here,

the interferences are taken to be transient loud burst-like sound events,

such as coughs or door slams. Unlike the percussive sources, these do

not tend to repeat in time and less so in a periodic manner. In addi-

tion, such events often overpower other sound sources, masking the

musical content in most frequency bands for a short period of time.

Their impact and removal will be further discussed in Sections 4.3.2

and 4.4.1.
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In practice, the sound sources in a music recording will most cer-

tainly share characteristics amongst them. For example, a clarinet and

a flute are both harmonic instruments. Therefore, one target source is

often estimated as an ensemble of akin sound sources. What is more,

individual sound sources often present aspects corresponding in dif-

ferent categories. For example, both the guitar and piano have a clear

percussive attack which is often dismissed if the source is considered

fully harmonic. Some methods have proposed to overcome this using

a cascade approach where the mixture is separated into harmonic,

percussive and residue components iteratively. The sources are then

estimated recombining the different aspects of them [28, 84].

2.5 evaluation of source separation methods

Most methods in music source separation are expected to result in

musically pleasing signals and what ultimately defines "musically

pleasing" relies on human perception. Therefore the most rigorous

practice to evaluate source separation methods is to perform listen-

ing tests where the separation quality is judged by humans. However,

this is deeply time consuming and finding enough relevant partici-

pants is not a trivial task, leaving space for objective metrics to give

us an indication on the success of the separation.

The currently widely adopted measures to quantify the quality of

separation, given the clean target sj (i.e. ground truth) and estimated

sources ŝj, are the ones from the blind source separation evaluation

(BSS Eval) Matlab toolkit, notably the signal-to-distortion ratio (SDR),

signal-to-interference ratio (SIR) and signal-to-artifacts ratio (SAR)

[132]. These metrics essentially quantify distortions between the tar-

get and estimated source signals.

More precisely, the estimated signal ŝj is decomposed into a true

source part sjtarget (i.e. target source) and some error terms corre-

sponding to the bleeding of other unwanted sources ejinterf
, plus ad-

ditive noise ejnoise
and algorithm artifacts ejartif [132], such that

ŝj = sjtarget + ejinterf
+ ejnoise

+ ejartif . (5)
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The SDR represents the ratio of the true source and all the error

terms,

SDRj := 10log10
||sjtarget ||

2

||ejinterf
+ ejnoise

+ ejartif ||
2

(6)

the SIR the ratio between the true source and bleeding,

SIRj := 10log10
||sjtarget ||

2

||ejinterf
||2

(7)

and the SAR the ratio between the target source with additive moise

and bleeding errors and the error of the algorithm’s artifacts

SARj := 10log10
||sjtarget + ejinterf

+ ejnoise
||2

||ejartif ||
2

. (8)

Since the SDR ultimately measures the overall error energy contri-

bution in the estimate, it is common to use it as a sole quantitative

indicator of the separation performance [125] and it will be used for

that purpose throughout this thesis.

None of the metrics above are consistently bounded as their val-

ues depend on the maximum energy of the estimated source signal,

and so, higher values imply better separation. Therefore, oracle per-

formance in the form of ideal binary mask or ideal ratio mask are

often included in the evaluation as a best-case scenario to help with

the interpretation of the results [125].

Another approach to put the BSS Eval results into perspective is to

compute the worst case scenario by using the unprocessed mixture as

the source estimate (i.e. ŝj = x). In this way, one can compute the gain

in separation performance compared to not doing anything, resulting

in the normalised NSDR, NSIR and NSAR metrics. Therefore, given

the SDRj of the source estimate and that of the mixture itself SDRx,

we can define the normalised SDR metric measured in dBs as

NSDRj := SDRj - SDRx. (9)

The NSIR and NSAR are defined following the same logic.

Alternatively, source separation methods can be compared to each

other. Such an approach would not be straight forward would the

source code of state-of-the-art methods not be available: fortunately,
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with the increase of open source research one can often compare the

performances of methods [90]. The signal separation evaluation cam-
paign (SiSEC) [125] has played a major role in making fair compar-

isons between methods possible. SiSEC provides a platform in the

form of open-source software, where source separation methods can

be plugged-in, that will automatically load, process and report perfor-

mance on the freely available music separation database MUSDB100.

Not only such software provides for the most fair MSS methods com-

parison practice up to date, but it also contains the current official

Python BSS Eval toolbox as well as the implementation for three ora-

cle separation methods. In addition, SiSEC campaign provides multi-

track datasets that contain the isolated target source signals necessary

to compute the evaluation metrics. Moreover, the organisers of SiSEC

have recently released the previously mentioned Open-Unmix plat-

form 1, serving as a reference method to promote collaborative work

within the community [125].

In this thesis we use the public Demixing Secrets Dataset DSD100

dataset 2, the main constituent of the recently released MUSDB100,

used in SiSEC 2016 [83]. The DSD100 is a multi-track dataset of 100

full length songs of different styles, containing a mixture track along

side the isolated drums, bass, vocals and "others" stems. The mix-

ture is the sum of all the isolated signals, which are all encoded at

44100Hz. All tracks are stereophonic but in this thesis we will down-

sample to monophonic signals by taking the mean from both chan-

nels at a given time.

Regarding the BSS Eval metrics, it is important to keep in mind

that they are merely proxies for perceptual quality and that they are

therefore not always aligned with human auditory assessment. In fact,

there have been several studies questioning its precision and correla-

tion with human perception altogether [18, 34, 55], and alternatives

have been proposed such as the Perceptual Evaluation methods for

Audio Source Separation (PEASS) toolkit [131]. Moreover, a recent

study seems to suggest the community has been using a misleading

SDR definition sensitive to energy scale variations and so they pro-

pose to use the scale-invariant definition of SDR [74].

1 More information available at http://sigsep.github.io/open-unmix
2 Available at https://sigsep.github.io/datasets/dsd100.html

http://sigsep.github.io/open-unmix
https://sigsep.github.io/datasets/dsd100.html
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In addition, the standard global SDR computation has some known

flaws handling silent or near silent segments. More precisely, to com-

pute the SDR following the SiSEC procedure, the track is divided into

non-overlapping segments that are then individually processed. The

segment-wise SDR are then averaged to obtain the overall track SDR,

which will then be averaged with the SDR of the other tracks in the

dataset to obtain the global SDR indicating the overall separation per-

formance across the full dataset. If a segment is silent its SDR will

be undefined and the current solution is to ignore such value when

averaging. However, if any segment is near silent, its SDR value is not

ignored but it will be exceptionally low, biasing the overall average.

Some have suggested to use the median instead of average value as a

work-around to this issue [124], but, up to this date, there is no con-

sensus on what is the best alternative practice to calculate global BSS

Eval metrics.

In this thesis, we will follow the common practice until this date,

and use the SDR and its normalised version as evaluation objective

metrics.

2.6 summary

This thesis is interested in blind source separation methods for an

underdetermined scenario of musical source separation tasks given a

monophonic audio recording. In particular, most of the dissertation

will revolve around the family of source separation methods based

on median filtering, known as the Kernel Additive Modelling (KAM)

framework.

Now that basic source separation concepts have been established

and a brief background of the relevant field has been outlined, the

mathematical notation will be introduced in the following Part ii ac-

companied by an increment in depth of the explanations and defini-

tions. Part ii focus on the KAM framework, defined in Chapter 3, as

well as its limitations and proposed extensions described in Chapter 4.

In order to ease the reading of this thesis, the relevant state-of-the-art

methods will be fully defined only when they are required in, or com-
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pared to, the proposed methods. For further literature reading on the

topic of music sound source separation, we recommend the following

references as a starting point: [19, 36, 92, 96, 109, 127].



Part II

M E D I A N F I LT E R I N G I N S O U R C E S E PA R AT I O N

The family of source separation methods based on median

filtering, known as the Kernel Additive Modelling (KAM)

framework, is introduced, as well as the adopted mathe-

matical notation. Further analysis and discussion will ex-

pose the framework’s limitations, followed by proposed

solutions to alleviate them.



3
K E R N E L A D D I T I V E M O D E L L I N G : K A M

In this chapter we introduce the main framework concerning this dis-

sertation alongside the mathematical notation adopted for the rest of

the document. We will focus on the family of methods performing

music source separation through median filtering, which fall under

the name of Kernel Additive Modelling (KAM). The relevant popu-

lar sub family of methods concerning this dissertation will be further

defined.

3.1 the framework

Our ability to distinguish between sound sources in a mixture has

been shown to often rely on local features of the sources such as repet-

itiveness, continuity and common fate [11]. In consequence, a num-

ber of SSS techniques propose to use simple local models of sound

sources, such as self-similarity of percussive instruments across a

small number of frequency bins [39] or periodic self-similarity in time

of the backing track in popular music [41, 106, 108]. By defining a lo-

cal model of the target source characteristics one can regard the other

sources as outliers to that model and use robust statistics to remove

them. These SSS techniques are based on median filtering and can

all be considered instances of the kernel additive modelling (KAM)

framework.

The KAM framework takes the idea of using simple local models

and generalises it by assuming that a source at some location can be

estimated by its values at other similar locations, defined by a prox-

imity kernel [82]. Assuming that several sources overlap in a specific

bin in a time-frequency representation, the idea is to reconstruct the

magnitude of a given source in that bin by analysing the values in

43
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other bins, in which the target source is likely to assume similar val-

ues. This approach is ultimately exploiting the repetitive nature of

music to separate sources from a given mixture.

In order to select time-frequency bins with similar occurrences of

the target source, a source-specific function is defined known as the

proximity kernel. Such function ought to capture the inherent prop-

erties of the target source (or sources), such as the broadband nature

of percussive sounds or the sparsity of vocals in contrast to the musi-

cal accompaniment. A major advantage of the flexibility in the prox-

imity kernel design is its adaptability to different types of sources,

rendering the whole KAM framework relatively rich, both in possible

application scenarios and theory.

Formally, KAM can be divided into three core steps: modelling of

the source signals, definition of the local model and separation step.

These steps translate into a joint minimisation of three cost functions:

source cost function, model cost function and separation cost func-

tion. Starting of from a single observation, this joint minimisation is

performed iteratively using the new source estimate as an input until

a stopping criterion is met. In the KAM literature, this is referred to

as the kernel backfitting algorithm (KBF).

KBF could be regarded as a de-noising algorithm that, given some

prior knowledge, improves the estimates of sources through a proce-

dural source-specific operation. The previously mentioned SSS tech-

niques based on median filtering can be regarded as instances of

KAM using only one iteration of the KBF [39, 41, 106–108]. The meth-

ods presented in this thesis extending the KAM framework will sim-

ilarly be defined for one iteration of the KBF algorithm but are, how-

ever, just as valid in the full framework.

In KAM applications for audio source separation the observation

mixture x is generally taken as a sum of J unknown sources {sj}j=1,...,J,

and in the monophonic case it can be written as:

x =
JX

j=1

sj (10)
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All samples from each source are then assumed to be indepen-

dent from each other and to be Gaussian distributed. In this way, the

source cost function is minimised by the observed value itself. Note

that the assumed independence between samples in each source does

not mean they are not related.

In the following, let X,Sj 2 CF⇥T be time-frequency representa-

tions of x and sj respectively, where F is the number of frequency

bands and T the total number of time frames. X, Sj 2 RF⇥T
+ are the

corresponding magnitudes.

The next step in KAM is to define a local model for each source

characterised by the proximity kernel of choice. Regardless of its

name, the "local" model does not imply proximity in location, but

proximity in shape determined by the kernel. For example, we could

chose the kernel function to assign proximity to every time-frequency

bin separated in time by a certain period ⌧, and so the local model

will include (f, t+ ⌧) as proximate to the TF bin (f, t) and not (f, t+ 1).

A popular kernel choice is the uniform k nearest neighbours func-

tion which assigns a positive proximity value to the k most similar

locations. More precisely, let L be the set of all TF bins (f, t) such that

L = F⇥ T . The k-NN kernel function will specify for every TF bin

(f, t) 2 L a set of k neighbour bins Ij(f, t) 2 Lk containing the k most

similar magnitude occurrences of the target source j present in the TF

bin (f, t), such that

8(f 0, t 0) 2 Ij(f, t), Sj(f
0, t 0) ⇡ Sj(f, t) (11)

8(f, t) 2 L, |Ij(f, t)| = k (12)

where Sj(f 0, t 0) is the magnitude corresponding to source j of the k

neighbours in the kernel and Sj(f, t) is the magnitude occurrence of

the target source j in the (f, t) TF bin.

Essentially, the kernel indicates the similarity between time-frequency

bins of the target source Sj. Since the target source is the constituent

of interest in the observable mixture X, knowing which bins contain

similar target source contributions is the key to identify and separate

it from the other unwanted sources.
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In the usual case where the target source is overlaid by other sources

in X, one can now use the similarity information given by the kernel

function to identify which TF bins in X have a common target source

contribution and restore the overlaid bin and produce the estimate Ŝj.

To this end, this estimation problem in KAM is expressed as a mini-

mization of a model cost function L, which can be stated for a single

channel as follows:

Ŝj(f, t) = argmin
�2R

X

(f 0,t 0)2I(f,t)

L(X(f 0, t 0), �). (13)

Depending on the choice of L the information in the bins indexed

by Ij is merged in different ways. The choice should take into account

that, while all these bins are similar in Sj, there might be consider-

able differences between them in X due to the overlaying unknown

sources.

A popular choice is the absolute deviation L(a,b) := |a - b| as

it is known to be robust against outliers, since it expresses, from a

probabilistic point of view, that we expect some larger deviations in

the difference a and b, and so the distance should not be Gaussian

distributed (the loss would increase quadratically otherwise). In this

case we can further express the estimation problem in KAM as:

Ŝj(f, t) = argmin
Sj(f,t)2R

X

(f 0,t 0)2Ij(f,t)

|X(f 0, t 0)- Sj(f, t)|. (14)

The solution to the above problem employs operators from robust

statistics (order statistics), which enable unbiased parameter estima-

tion in the presence of up to 50% outliers. With this choice of L, the

solution of the estimation problem (Equation (13)) is:

Ŝj(f, t) = median(X(f 0, t 0) | (f 0, t 0) 2 I(f, t)), (15)

Ŝj being the magnitude estimate of the source of interest sj. The

derivation of this solution is detailed below, following the generic

approach described in [3].

For simplicity, let

L(Sj(f, t)) =
X

(f 0,t 0)2I(f,t)

|X(f 0, t 0)- Sj(f, t)|
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and be expressed as follows :

L(�) =
kX

i=1

|Xi -�|

Assume the observed data Xi to be arranged in ascending order of

magnitude such that X1 6 X2 6 ... 6 Xk. For values of � in the range

Xp < � 6 Xp+1 8 p = 1, 2, ...,k we can write

L(�) =
pX

i=1

(�-Xi)+
kX

i=p+1

(Xi-�) = (
kX

i=p+1

Xi-
pX

i=1

Xi)- (k- 2p)�

L(�) is clearly linear and continuous, with a slope of (k- 2p) increas-

ing by 2 for each ascending p value. If k is odd, there is an integer

m such that the slope over the intervals (Xm-1, Xm] and (Xm, Xm+1]

are negative and positive respectively. These two conditions are met

if m = k+1

2
. However, if k is even, there is an integer m for which the

slope over (Xm, Xm+1] is zero, which is possible for m = k

2
.

Thus a solution to the estimation problem is:

�̂ = argmin
�

kX

i=1

|Xi -�| =

=

8
>>><

>>>:

Xk+1

2

k odd

(Xk

2

, Xk+1

2

] k even

= median(X1, X2, ..., XK)

Therefore, in order to achieve the magnitude estimate of the target

source Ŝj, every TF bin is replaced by the median value of the kernel

bins. In order to perform the actual separation, the complex estimate

Ŝj is needed so it can consequently be inverted back to a time domain

signal. This is typically done using a soft-masking approach [19, 92,

125].

3.2 kam in this thesis

Since KAM is a considerably broad framework as a whole, we will,

from now on, focus on a subset summarised in the table 1, that was
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also used in a similar form in the REPET (REpeating Pattern Extrac-

tion Technique) family of methods mostly applied to singing voice

removal [108]. However, most of the insights this thesis provides on

this reduced subset are as valid for the whole framework.

Therefore, for ease of understanding and applicability, let x be the

signal to be processed with

x(t) = s(t) +n(t) (16)

where s and n are the clean music (i.e. target source) and the inter-

ference signal (i.e. unwanted source), respectively. Further, let X,S 2
CF⇥T be the spectrograms of x and s.

The interference signal n is usually considered to be sparse com-

pared to the music signal s assumed to be repetitive. The vocal com-

ponent in a given mixture is also often assumed to fluctuate and to

be sparse in comparison to the musical accompaniment which is ex-

pected to be repetitive and powerful [109]. Therefore, in a vocal/ac-

companiment separation scenario the vocals would correspond to n

and the accompaniment to s.

In the case of an interference reduction task where the goal is to

reduce the impact of short burst-like sound events such as coughs,

s will represent all the musical component in the given signal and

n the interference itself. Both vocal/accompaniment and interference

reduction will be considered applications in this thesis. It is however

important to notice that the definition of the framework is the same

for both those scenarios.

In the following, we exploit that spectral frames in S typically occur

several times in similar form, either because note constellations are

repeated over time (as is common in music) or because notes are

being held for a while. The unwanted source on the other hand may

or may not be repetitive and thus we do not make any assumptions

on it. Therefore, we will model only s in KAM without considering

the interference n as an actual sound source but just as noise with an

unknown distribution.

Since s only consists of a single channel, we can eliminate many un-

necessary elements in KAM (multi-channel and iterative re-estimation
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KAM framework KAM in this thesis

Applications Source Separation Audio Source Separation:

Data type multitrack monophonic

KBF iterations ⇠ 5 1

Nb source models variable 1

kernel function variable frame-wise k-NN

model cost function variable |a- b|) median

separation function variable soft masking

Table 1: Summary of the KAM subset framework concerning this thesis.

extensions, compare [82]), resulting in a very simple representation.

As in the case of REPET and other vocal separation methods based on

median filtering within the KAM framework [41, 106, 108], we use a

frame-wise, k-nearest neighbours (k-NN) kernel function based on the

Euclidean distance, i.e. (f, t̃) is in I(f, t) if frame t̃ is among the k most

similar frames. Therefore, we can now rewrite the KAM optimization

problem over the model cost function L as follows:

Ŝ(f, t) = argmin
�2R

X

(f,t̃)2I(f,t)

L(X(f, t̃), �) (17)

Here we choose the common cost function L(a,b) := |a- b| which

basically models our belief regarding how good or bad a specific

choice for S(f, t) is, considering that we call all elements in I(f, t) sim-

ilar to it. As the derivation above shows, this choice leads to the use

of robust statistics in the form of the median, which as an operator is

invariant against outliers (breakdown point is 50%) and thus allows

robust parameter estimation in the presence of noise. More precisely,

the solution to the problem in Equation (17) is:

Ŝ(f, t) := median(X(f, t̃)|(f, t̃) 2 I(f, t)). (18)

To perform the actual separation, we employ soft masking (similar

to Wiener filtering). In an interference reduction application, we are

only interested in yielding an estimate Ŝ for the magnitude spectro-

gram of the music. Therefore, we define an estimate of the unwanted
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source as N̂ = max(X - Ŝ, 0) so we can obtain an estimate Ŝ for the

complex music spectrogram via

Ŝ =
Ŝ

N̂ + Ŝ
�X (19)

where� represents element-wise multiplication, preceded by an element-

wise division.

In the case of vocal/accompaniment separation, similarly to [41],

we use a more sophisticated mask to extract both accompaniment

and vocals from the mixture. More precisely, we measure the dis-

tance between the mixture X and the accompaniment estimate Ŝ after

a logarithmic compression (with the logarithm leading to a percep-

tually more meaningful distance [41]) and employ this distance in a

Gaussian radial basis function to obtain a mask W 2 RF⇥T :

W(f, t) = exp

0

@-
( log(X(f, t))- log(Ŝ(f, t)) )2

2�2

1

A (20)

for all TF bins (f, t) in F⇥ T and where � is a parameter to addition-

ally compress the log-distances non-linearly. Here we set �=1.

The complex spectrograms for the accompaniment Ŝ 2 CF⇥T and

vocals N̂ 2 CF⇥T can then be estimated by applying the soft masks

W and (1-W) to the original mixture spectrogram X respectively:

Ŝ = W �X (21)

N̂ = (1-W)�X (22)

3.3 summary

The Kernel Additive Modelling (KAM) framework comprises the pop-

ular and computationally efficient family of methods for source sepa-

ration based on median filtering. Such a flexible framework, applied

in multiple music source separation tasks [39, 41, 82, 106, 108], re-

quires no training data as it targets the inherent properties of the

sources directly by taking advantage of their differences in the sepa-

ration process.
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The basic idea behind KAM is that one can reconstruct the magni-

tude for a given source by analysing the values at the locations where

the source is likely to assume similar values, ultimately relying on the

assumed repetition of sound events in musical signals. The success of

the separation will depend on the ability to identify similar sound

events to the source of interest in the presence of overlaying sources.

The source similarity is determined by a source-specific kernel func-

tion, which often corresponds to a k nearest neighbours (kNN) search

based on the Euclidean distance.

From now on, we will focus on the popular KAM subset of meth-

ods using the frame-wise k-NN kernel function for monophonic sig-

nals [41, 106, 108]. We will take the input mixture to be a linear sum

of two sound sources, the target (s) and the unwanted (n) source. The

aim will be to reconstruct the target source, reducing the impact of

the unwanted source in the mixture. We will assume the interference

to be sparse regarding the target source, and of unknown distribu-

tion. Therefore we will only focus on modelling the target source. In

addition, we will only consider one iteration of the kernel backfit-

ting algorithm (KBF) as it is independent from the modelling stage of

interest to this thesis and therefore it would only improve the separa-

tion results further acting as a post-processing de-noising algorithm.

In the following Chapter 4, we will discuss further the flexibil-

ity of the KAM framework and we will be particularly interested

in its limitations in Section 4.1. The rest of the chapter (Sections 4.2

to 4.4) provides extensions to the framework to overcome such limi-

tations, comprising one of the major contributions of this thesis. The

proposed methods will be initially outlined and then formally intro-

duced within the framework, to be further evaluated in a music sep-

aration task. We will consider two main music separation tasks: vo-

cal/accompaniment separation and burst-like interference reduction.

The latter being introduced for the first time in this thesis.
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In this chapter we unveil and discuss some limitations of the popular

kernel choice in KAM presented in section 3.2, developing a sense of

the kernel behaviour at work. We further propose several extensions

to the framework to alleviate such limitations, offering a view on

how signal processing techniques can help overcome non trivial cases,

such as loud noise in music recordings.

4.1 the dark side of kam

As fully described in the previous Chapter 3, to apply a KAM-based

method to a source separation problem, one needs to design a cor-

responding kernel that identifies similar spectral bins for the target

source while ignoring the energy associated with other sources. The

success of separation in KAM ultimately depends on the ability of

the kernel to identify frames with similar target source energy in the

presence of overlaying sources.

In existing KAM approaches, the kernel design is often rather rudi-

mentary. In particular to this thesis, the frame-wise k-NN kernel is a

simple function based on Euclidean distance finding the k most sim-

ilar frames to a given current frame. Even though a such kernel can

exploit some of the source’s regularities, its simplicity leads to further

drawbacks.

To illustrate this, let’s consider a recording containing two instru-

mental solo sections for a piano and a guitar. Depending on the

recording conditions, the sustain part for both instruments can have a

similar energy distribution in frequency direction (playing the same

musical pitch), as it can be observed in Figure 5 where the frames

52
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Figure 5: MIDI C5 spectrogram of two different synthesised instruments, pi-
ano and guitar, illustrating the importance of the temporal context
when defining a similarity kernel, that could mistakenly relate the
two frames in red if the surrounding is not taken into account.

in the sustain part of the note (like the one in red) of the piano and

guitar could be considered similar. As a consequence, a frame-wise

kernel based on the Euclidean distance sometimes fails to identify

the intended dissimilarity between frames and can confuse a guitar

frame with a piano frame. Such issues are even more pronounced if

an instrument has variable timbre, for example due to the use of ef-

fects. This mix-up can lead to an unexpected energy distribution for

an instrument in the separation result.

Using only a single frame, such issues are difficult to resolve. How-

ever, by taking the temporal context of a frame into account, we ob-

tain more information about which frames are actually similar to each

other for a given target source. For example, using a larger temporal

context, the similarity measure might take a frame containing the

onset into account, which can be very discriminative for an instru-

ment, as it can be seen in Figure 5 where the difference between these

sources is clearly visible in the 4 seconds window presented. Also, the

temporal context might even be large enough to pick up some basic

information about the musical context and, assuming the different

instruments play different note patterns, we can use this low-level

musical context as additional guidance to find similar frames for a

given instrument. Based on this simple idea, Section 4.2 below shows

how to introduce a temporal context to existing kernels and the ben-

efits of it.
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Furthermore, the notion of similarity derived from such a simple

kernel can be quite limited as it fundamentally relies on the follow-

ing assumptions. Firstly, the target source is considered to be closer

to stationary than the overlaying source, considered to be sparse. For

example, in the case of vocal separation outlined in Section 3.2, this

means that we expect many time frames containing the same, or sim-

ilar, accompaniment but not many with the same voice content.

Secondly, this kernel choice assumes the target source to repeat in

time at the same frequency, meaning the position of partials and other

objects must be the same within the frames selected by the kernel.

While this might be a valid assumption for full-length pop songs, it

might be wrong if the recording is short, the source is consistently

overlaid with the same interference in each repetition or for sources

with highly variable pitch.

One way to alleviate such restrictions is to increase the sound ma-

terial available for the sound reconstruction by including frames with

notes of the target source with different pitch but similar frequency

constellation. Section 4.3 below details how to do so by extending the

KAM framework in the form of a shift-invariant kernel.

Finally, in the KAM framework it is implicitly assumed that the en-

ergy in each time frame of the given mixture is dominated by the tar-

get source. So, in a vocal separation example, the energy contribution

of the accompaniment is assumed higher than that of the vocal source,

in the same way any audio interference is inherently assumed to be

less powerful than the target music. This means that if the signal-to-

interference (i.e. signal-to-vocal) ratio is low, the kernel function will

fail to find similar frames.

In such case where the target source is masked by the other source,

KAM would need an additional initial step to discriminate between

the sources and yield a preliminary signal model to input the frame-

work. Section 4.4 explains how to achieve so and how to design an

adaptive, interference-resilient kernel by combining NMF with the

KAM framework.



4.2 temporal context 55

4.2 temporal context

In order to improve the similarity notion between frames we can take

advantage of the information in neighbouring frames by introducing

a temporal context in the kernel function. Basically, given a frame we

aim to find similar frames for, we simply include the preceding and

succeeding frames in the similarity function underlying our kernel.

Effectively, that means we measure similarity based on entire groups

of frames instead of single frames. The size of the temporal context

should be chosen large enough to give some rough indication of local

musical patterns.

Following the notation of the previous Chapter 3, a time frame (f, t̃)

is now in I(f, t) not only if S(f, t̃) ⇡ S(f, t), but also for its neighbour-

ing frames such that:

8(f, t̃) 2 I(f, t), S(f, t̃+ c) ⇡ S(f, t+ c) 8 c 2 [-C,C] (23)

where C specifies the temporal context. Therefore, instead of compar-

ing frames t and t̃ with a simple squared Euclidean distance

X

f

(X(f, t)- X(f, t̃))2 (24)

we employ
X

f

CX

c=-C

(X(f, t+ c)- X(f, t̃+ c))2 (25)

as frame distance in the k-NN search. We maintain the Euclidean

distance in the kernel as we care for both the magnitude value and

location of frequency bins in the group of frames.

In Figure 6 both of these distances are compared for a given frame

t, with t = 1000 in the left and t = 1120 in the right half of the figure.

The top row shows the frame-wise distance (equation (24)) values be-

tween t and all other frames, and the middle row shows the temporal

context distance (equation (25)) values between a 1s segment centred

in t and all 1s segments centred around all other frames. The spec-

trogram of the mixture to be processed is shown in each half of the

figure and the two frames are indicated by a vertical red line. The

yellow and magenta lines in Figure 6 indicate the most similar frame
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Figure 6: Comparison between frame-wise (top row, equation (24)) and tem-
poral context distance (middle row, equation (25)) for a given
frame t (in red) in a 2.5 minutes segment of a sample song mixture
magnitude spectrogram (bottom row). The closest nearest neigh-
bours, t̃single and t̃context, are highlighted for both the frame-
wise (yellow) and temporal context (magenta) kernels respectively.
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found using the single frame and temporal context distance, respec-

tively.

As we can see, the single frame distance (top row Figure 6) is much

more noisy compared to the one with temporal context (middle row

Figure 6). Also, peaks indicating a low distance (i.e. high similarity)

are much clearer for the curve using a temporal context; this is partic-

ularly visible in the right example of Figure 6 where many spurious

peaks can be found in the single frame distance (top row). Such over-

all change in qualitative behaviour also influences which frames are

selected as the most similar frames, as the distance values between

similar (i.e. "clear" peaks) and not-similar frames using a temporal

context are different enough to avoid confusion in the nearest frame

selection, unlike the distance values obtained with a single frame ker-

nel.

The nearest neighbour selection for the example frame highlighted

in red (t =1120) on the right half of Figure 6 exhibits this behaviour.

As we can notice, the nearest frame selected (in yellow) via the "noisy"

single frame distance (first row in black) is in a completely different

section of the song with different frequency components, and so in-

troducing unwanted noise in the filtering stage. On the other hand,

the temporal context distance of that section presents rightly much

higher values (second row in blue), ensuring a better selection of ac-

tually akin frames with similar frequency components, like the frame

selected as nearest neighbour (in magenta). In some cases both dis-

tances present a low value for a frame that makes sense musically, as

can be seen in the left side example of Figure 6 where both selected

frames (in yellow and magenta) happen at the end of a similar note

passage. Even though this is not always guaranteed, the introduction

of a temporal context helps towards having a musically sound nearest

neighbour, further stabilising the kernel.

Re-using the previous example of a mixture containing a guitar and

piano solo illustrated in Figure 5, if the current frame is in the guitar

solo, when looking for similar frames with the basic kernel, one may

find confusion with the piano solo. However, if we introduce a tempo-

ral context in the kernel, the newly created group of frames centred

around this frame might actually span a few notes. Therefore, when
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Figure 7: SDR results for the proposed extension with different temporal
contexts for the DSD100 dataset.

looking for similar segments, we can take this local note constellation

to some degree into account, which potentially aids in differentiating

between similar timbres. In particular, we would expect the guitar to

not be mistaken for the piano any more.

4.2.1 Empirical evaluation

To quantitatively compare the frame-wise kernel with and without

temporal context, we now focus on a vocal separation task. We con-

sider the first 30 seconds of each song in the Demixing Secrets Dataset

100 (DSD100) from the 2016 Signal Separation Evaluation Campaign

(SiSEC) [83] and the Signal to Distortion Ratio (SDR) BSS Eval tool-

box 3.0 to assess the separation quality [132], both described in Sec-

tion 2.5.

For this evaluation, the baseline is the instance of KAM for vo-

cal separation implemented using an FFT size of 4096 and a hopsize
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Figure 8: SDR results for the proposed extension (left bars in green) and the
baseline method (right bars in black) tested on the DSD100 dataset
using C selected by parameter sweep.

of 2048 samples as in [41]. The proposed method extends this base-

line by introducing a temporal context in the proximity kernel as

described in Section 4.2. The number of frames C specifying the tem-

poral context is the parameter of this extension.

In principle, this parameter could be adapted for each frame based

on musical knowledge, for example, based on segmentation informa-

tion or pitch tracking data, which would render the method more

flexible and adjustable to musical changes in the signal. However, we

chose to use a fixed setting for the context C to set a benchmark of its

overall influence as we expect an informed dynamic method to only

but improve the performance. Therefore, to find a suitable value, we

can conduct a simple parameter sweep, as the one shown in Figure. 7.

Figure. 7 shows the averaged SDR values for both vocal and ac-

companiment separation using the proposed extension for different

context values. We can observe an overall trend in Figure 7 shared

by both vocal and accompaniment separation, where the biggest dif-

ference in SDR value is between a zero radius (the baseline method)

and the other values taking a temporal context into account. In addi-

tion, we see that the highest SDR values are achieved for a temporal
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context of around 1 second (C values between 0.25 and 0.6 seconds),

which can be considered wide enough to capture some simple mu-

sical patterns. If C is increased, the musical information within the

temporal context grows and we observe a slight decrease of the SDR.

For this reason, C is fixed to 0.372s for this experiment.

Using this fixed value for C, Figure 8 shows the SDR values com-

paring the frame-wise baseline kernel with the extension proposed

in this thesis introducing a temporal context in the kernel. On the

SiSEC dataset, the proposed extension consistently outperforms the

baseline and improves the results by about 0.5dB SDR on average for

both vocal and accompaniment separation, representing, in particular,

a substantial improvement of the vocal estimate. Given its simplicity,

this is quite considerable.

Overall, the results show the advantage of introducing a temporal

context in the similarity search. The presented method is simple and

unsupervised, requires no prior training (other than the potential op-

timised choice of the temporal context C), and temporally stabilises

the source estimates, improving the separation performance over the

baseline frame-wise k-NN kernel function.

4.3 shift-invariant kam

KAM framework relies on the repetitive nature of music. This means

that we expect to find enough frames with the same (or similar) tar-

get source overlaid by different constellation of frequencies from the

other sources in order for the separation to succeed. In particular, the

proportion of identified nearest neighbours with overlaying sources

at the same position needs to be less than half or it would surpass the

50% of outliers breakdown point of the median operator.

To illustrate this, in Figure 9 every box represents a time frame, the

target source is represented by a snake (box E) and the overlaying

sources by the coloured circles. The four boxes (A,B,C,D) represent

the k-NN and the goal is to reconstruct the snake by taking the me-

dian value amongst them (box F). Overlaying sources that appear in
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Figure 9: Illustration of the different cases of overlaying sources within the
kernel function. Every box symbolises a time frame, the snake rep-
resents the target source and the circles the overlaying sources.
Overlaying sources present in less than half of the k-NN in yel-
low, present in more than half of the frames in different positions
in red and in the same position in green. Being the latter one the
problematic for KAM as the median operator is only robust to up
to 50% of outliers in the same position.

less than half of the frames (yellow circle in B) can be considered as

outliers and will be therefore removed by the median operator.

The issue is not as straight-forward for interferences that appear in

more than half of the nearest neighbours. If the overlaying source is

present in more than half of the frames but in different locations, like

the red circles in Figure 9, it can still be considered as outliers and so

the median filter will be able to restore the target source. For example,
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even though the snake’s head is overlaid by the red source in box

B of Figure 9, the median value amongst all boxes will correspond

to that of the snake’s head alone as none of the other boxes have

an interference at that location, and so the head of the snake could

be restored. However, the snake’s tail has a different fate since it is

overlaid by the same green interference in 3 out of the 4 boxes, and so

its contribution will remain when taking the median value amongst

all boxes. This scenario corresponds to overlaying sources that appear

in more than half of the k-NN at the same location and is one of the

cause of failure in the separation stage.

A way to avoid such unwanted case, could be to pick a k large

enough to ensure all overlaying sources appear as actual outliers

given the target source is the most repetitive one or that there are

enough repetitions to gather a large enough pool of close frames.

However this is rarely the case in music signals, as sources are corre-

lated and it is common to find different sources repeating at the same

time. In addition, even if the target source was distinctively much

more repetitive than the other sources, it would still be a problem if

the recording is short or the target source varies highly in pitch (e.g.

vibrato).

On the other hand, it is clear that what all the target source ap-

pearances have in common is that they are all issued from the same

source. This implies that their frequency pattern will somehow be

related regardless of the pitch. Therefore we propose to use such re-

lation to increase the pool of potential nearest neighbours candidates

to reduce the percentage of repetitions of unwanted sources in the

kernel.

KAM implementations typically use a standard linear scale time-

frequency representation as it is both memory and computationally

inexpensive as mentioned in Section 2.3. In such a representation,

the spacing between harmonics will depend on the fundamental fre-

quency. However, using a logarithmic frequency scale, the location of

every harmonic with respect to the fundamental frequency will be

constant [12].
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Taking f0 as the fundamental frequency of a signal, the frequency

of the nth harmonic will be located at n ⇥ f0 in a linear scale but

would appear at log f0 + logn in a logarithmic frequency scale. In

particular, within a certain frequency range, pitch shifts simply corre-

spond to shifts in log-frequency representations.

In consequence, here we propose an extension to the KAM frame-

work in the form of a shift-invariant kernel using a logarithmic fre-

quency axis. This kernel extends the k-NN function by comparing

not only the original frames but also all frequency shifted versions.

In other words, we expect it to identify notes of the same source dif-

fering in pitch as being similar and to reconstruct a unique musical

event from them despite the shift, drastically increasing the sound

material available for the sound reconstruction.

Following the notation of the previous Chapter 3, let Xq,Sq 2 CF⇥T

be the Constant-Q transforms (CQTs) of x and s, a log-frequency rep-

resentation with a perfect reconstruction property [114], and Xq, Sq

the corresponding magnitudes. The goal now is to locate not only pat-

terns repeated in time but also their shifted versions. In order to do so,

we introduce a shift � in the kernel function measured in frequency

bins.

To this end, let X�

q be a frequency shifted version of Xq such that

X�

q(f, t) := Xq(f+ �, t) (26)

We define a new shift-invariant kernel Is as follows: for a given (f, t),

we have (f̃, t̃) 2 Is(f, t) if |�| < � for � := f̃- f and X�

q(:, t̃) is among

the k closest frames for frame Xq(:, t) across all � 2 {-�, . . . ,�}, where

� denotes the absolute maximum shift measured in number of fre-

quency bins. Here, we used the slicing notation : to denote all ele-

ments in an index dimension.

This means that two time frames can now be considered as neigh-

bours if they display a similar harmonic pattern at different frequency

locations. In other words, the proposed kernel function Is can be seen

as a shift-invariant version of the frame-wise k-NN baseline kernel I

defined in Section 3.2. The estimation problem remains essentially the
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same (compare to Equation (17)), just that the variability in frequency

is now explicit:

Ŝ(f, t) = argmin
�2R

X

(f̃,t̃)2Is(f,t)

L(Xq(f̃, t̃), �). (27)

For the same model cost function as above in Section 3.2, we get the

solution:

Ŝ(f, t) := median(Xq(f̃, t̃)|(f̃, t̃) 2 Is(f, t)). (28)

As a result of this extension, we can now recover a note played only

once by using notes different in pitch played by the same instrument,

as seen in the third row of Figure 10.

In practice, the implementation of this approach can be split into

two main steps: similarity measure (Fig 10 B1) and frequency align-

ment (Fig 10 B2). In particular, every frame in the mixture has to be

shifted in frequency direction and compared to the remaining frames,

2 · � times. Computing the Euclidean distances in every step is in

O(T2 · F). Altogether, with � typically being dependent F , the com-

plexity of this approach is considerable: O(T2(F2 + log T)). Note that

� depends on the chosen frequency resolution, commonly, at least of

half tone for Western music.

In practice, even after limiting � to a reasonable frequency range

(e.g. 24 semitones), a basic implementation of this approach turns out

to be computationally quite expensive in comparison to the baseline

of overall complexity of O(T2(F + log T)) as usually T > F. Further

detail on this complexity derivation can be found in appendix A.

4.3.1 Acceleration Extension

Under runtime constraints, the method above forces the user to trade-

off separation performance for better running time. For example, one

may set the � to cover only half an octave, at the risk of not find-

ing similar events. In order to accelerate the shift-invariant kernel

computation while preserving the increase in separation quality, we

propose to use a different time-frequency representation to allow a

quicker shift-invariant search.
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Figure 10: Comparison of the baseline (second row) and the basic version of
our proposed shift-invariant method (third row) for an example
frame (A) from the input magnitude frames overlaid by an inter-
ference framed by a yellow box (Zoom-in). The k closest frames
found for the current frame (A) by the baseline (B) and the pro-
posed method, before (B1) and after the shifting operation (B2).
The plots (C) contain the current frame (t) next to the estimated
output frame (t̃) for each method. The complete estimation of the
harmonic source for the frames containing interference is shown
in D for both methods.



4.3 shift-invariant kam 66

The idea is to employ a representation that captures the harmonic

patterns in each frame, while being invariant against their exact fre-

quency location. More precisely, given the magnitude CQT Xq, we

perform our search on the magnitude spectrum calculated on each

frame Xq(:, t). This transform is related to cepstral analysis [104] but

has more recently been called specmurt analysis [111] when applied to

a log-frequency linear-magnitude representation (as in our case). In

such domain, the frequency of frequencies are referred to "quefrency".

We can define the specmurt Xs, with F being the Fourier transform,

such that:

Xs(:, t) := |F( Xq(:, t) )| 8 t 2 [1, T ] (29)

The specmurt is invariant against the frequency location of the pat-

terns, since this is encoded in the phase (which we ignore). Hence,

we no longer need to shift its frames in the frequency direction to

find the nearest neighbours as in Equation (4.3). Now we can simply

employ a frame-wise k-NN kernel function (as defined in Section 3.2)

on this domain and be shift-invariant.

Using the specmurt domain brings various advantages. First, elim-

inating the specmurt-phase by using the magnitude value, we elim-

inate pitch information and keep only the "pattern" information as

shown in Figure 11. Second, certain spectral characteristics are repre-

sented more compactly. For example, a broadband sound in the time-

frequency domain, like the interference overlapping the first note in

Figure 11, will correspond to "low-quefrequency" components in the

specmurt domain. This way, percussive components can more easily

be ignored in the similarity search (if needed) and provides an inter-

esting new angle to design source specific kernels by applying differ-

ent weightings to the specmurt coefficients. Further, we can exploit

the symmetry of the Fourier transform to eliminate half of the spec-

murt components, reducing the run time further. Therefore we can

define the employed section of the specmurt X 0s 2 R(F/2-↵)⇥T using

a parameter ↵ to set the quefrency (qf) cut-off point of the broadband

information as follows:

X 0s(qf, :) = Xs(qf, :) for qf 2 [↵, F/2] (30)
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Figure 11: From top to bottom, illustration of the magnitude CQT (Xq), mag-
nitude specmurt (Xs) and the employed section of the magnitude
specmurt (X 0s) in the proposed acceleration, of a given mixture of
a musical instrument corrupted by a broadband interference on
the first note.

Overall, instead of O(T2(F2 + log T)) operations for the shifts and

Euclidean distances as before, we transform X to specmurt and only

have to perform one set of Euclidean distances (comparable to the

baseline that does not support shift invariance), resulting in only

O(T2(F+ log T)) operations for these steps.

Nonetheless, while this approach enables a rapid shift-invariant

selection of frames, it does not tell us the shift we need to apply to

a CQT frame such that it is indeed similar to a given one. Given an

input frame, a first idea is to apply all possible shifts to the k frames

found as similar on the specmurt domain. While this is a considerable
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speed-up over the plain approach described in Section 4.3, it is still

rather slow. Therefore, we will accelerate this step next, again using

the Fourier transform, which was explored in [111] in a related form

in the context of source-filter modelling.

To this end, we assume we know from the specmurt shift-invariant

kernel that frames t and t̃ are similar. For notational purposes, we

will use the shorthands Y := Xq(:, t) and Z := Xq(:, t̃). That means, Y

and Z differ mostly by a shift in frequency, which we need to identify.

We can express this as Y = H ⇤ Z and solve for H, where ⇤ denotes a

convolution. In case Y = Z, H(0) = 1 and there is no shift. If all entries

in Z are shifted by 1 compared to Y, we obtain H(1) = 1. That means,

to obtain the correct shift between Y and Z we only need to compute

a deconvolution between them and the Fourier transform can again

accelerate this step. As detailed in [111], a fast deconvolution can be

calculated via

H = F

 
IF(Y)

IF(Z)

!

, (31)

where IF denotes the inverse Fourier transform.

Assuming that frames t and t̃ are indeed similar, the H we ob-

tain this way will typically be very sparse and essentially have a

strong peak at exactly one position, which indicates the shift we

need to apply to frame t̃. Once we have the optimal shift for all k

close frames we can continue as in the baseline method. Combin-

ing the two acceleration methods, the computational complexity is

O(T2(F+ log T)) +O(T · F log F). Further detail on this complexity is

available in appendix A

Even though measuring similarity based on the magnitude spec-

murt considerably reduces the computational complexity, it does not

assure the frames found to be similar are the most similar. Discarding

the phase in the kernel function renders the method shift-invariant

but it also eliminates the unitary property of the Fourier Transform,

i.e. Parseval’s theorem does not hold anymore and thus Euclidean

distances can be different. Therefore, when measuring the Euclidean

distance between two frames in the magnitude specmurt, a large dis-

tance certainly indicates dissimilarity but a small distance does not

assure a close match in the time-frequency domain (for example, ma-
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jor and minor chords can get confused). In practice, this means that

kernel function will find k close frames but not necessarily the k most

similar ones.

To overcome this drawback while maintaining the complexity re-

duction, we here propose to use the acceleration technique as a prun-

ing method. Instead of selecting k-NN in the kernel function, we se-

lect a larger fixed value (k+ P) to increase the pool of close frames,

where P is the number of additional pruning time frames. We then

perform the specmurt analysis described above to find their opti-

mal shift. At this point, one can retrieve these (k+ P) frames in the

time-frequency representation and shift them by their corresponding

amount. This means, we now have a narrowed down shifted version

of the input magnitude, and so we can apply the baseline method

to select the k-NN from the (k + P) frames presented. The overall

complexity remains the same.

4.3.2 Empirical evaluation

In order to evaluate the proposed shift-invariant kernel influence on

the overall framework, we here present a simple and well defined ex-

periment that will validate the potential of the proposed method. The

given mixtures correspond to a single musical instrument corrupted

once by a burst-like interference (e.g. the input magnitude shown in

Figure 10) and the task is to remove the interference, or reduce its im-

pact. The interferences are those that typically occur in live or studio

recording scenarios: cough, chair drag sound, door slam and sound

of object being dropped. We retrieved example recordings of each

from freesound1.

Since we are mainly interested in finding out how the different ker-

nels behave on recordings where the musical source is not repeated

in time, we have created a synthetic dataset where the repeated and

not repeated passages are known. In this way we are able to compare

the proposed method against the baseline in both cases. We created

five different melodies (monophonic) and five different chord pro-

1 https://www.freesound.org/

https://www.freesound.org/
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gressions, to simulate short studio takes, and synthesized these with

12 different instruments using the high quality Native Instruments

Komplete Ultimate suite. We then created test recordings by overlay-

ing the recordings with the interferences at 12 dB SNR, placing the in-

terferences at two different locations: on a repeated musical segment

and on a not repeated one, resulting on 960 tracks between 5 and

10 seconds each. While a more realistic dataset might better indicate

the performance of the methods, we chose this setup to investigate

exactly those cases where the individual methods might differ the

most.

To quantitatively compare the separation quality of our proposed

extension to the baseline, we used the BSS Eval toolbox 3.0 [132] to

calculate the Signal to Distortion Ratio (SDR). We used the CQT im-

plementation described in [114], setting the parameters to 24 bins per

octave, gamma value of 20, minimum frequency of 27.5Hz and the

maximum frequency being half of the sampling frequency (44.1kHz).

For all methods, we hold the parameter k of the k-NN kernel function

fixed at 300 frames. Note however, as it will be further discussed in

Section 4.5, that k can and should be adjusted to the level of repet-

itiveness in the input recordings – the higher the repetitiveness, the

more all methods benefit from higher k. For our proposed method,

we fixed the number of shifts � to 48 (covering 4 octaves in total).

In the acceleration+pruning method, the parameter P is set to be 2k.

We ignored the first coefficient in the specmurt representation as we

expect it to mainly capture the broadband components. In addition,

we assume the location of the interference in the mixture is known

and thus we only process the frames affected and measure the SDR

on those segments. The kernel function for all methods is applied to

the remainder of the frames.

The results with respect to the normalised SDR (NSDR) are given in

Table 2, for both melody and chord progressions, on repeated and not

repeated musical segments. As expected, the KAM baseline behaves

poorly when there is no repetition, especially for melodies, which

resembles the common scenario in popular songs where the source

of interest is consistently repeating on the same pattern of unwanted

sources. The NSDR value for the baseline for the non-repeated chords
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Melody Chords

Repeated Not repeated Repeated Not repeated

Baseline 3.31 -2.40 4.11 1.26

Prop. 1 4.61 3.87 4.11 2.11

Prop. 2 5.06 4.22 4.03 1.09

Prop. 3 5.23 4.36 4.52 2.10

Table 2: NSDR values for the baseline, the basic shift-invariant proposed
method (Prop. 1) and the acceleration technique without pruning
(Prop.2) and with pruning from an initial pool of twice the amount
of k frames (Prop. 3). Parameters: k = 300, SNR = 12dB, � = 48. See
Section 2.5 for the interpretation of NSDR.

shows that, even though the chord is not repeated, some of its notes

might, which can already be exploited by the method.

However, the basic shift-invariant method (Prop. 01) clearly out-

performs the baseline in those not repeated cases demonstrating stan-

dard KAM’s limitations in such cases. In addition, it matches or im-

proves the performance of the baseline on repeated segments, which

suggests the proposed kernel function benefits from the shifting op-

eration presenting the overlaying unwanted sources as clear outliers

(affected by a shift in frequency). The basic shift-invariant method re-

mains computationally expensive. However, the proposed methods

based on specmurt analysis with (Prop. 03) and without pruning

(Prop. 02) are effective in the melody scenario by even improving

upon Prop. 01’s separation performance. This can be explained by

the fact that the accelerated variants can find arbitrary shifts, while

the shift in Prop. 01 is limited to reduce the computational time. In

the chord progressions scenario, the low results of Prop. 02 confirms

limitations in using the specmurt domain and justifies its use as a

pre-selector for the pruning method Prop.03.

The results clearly demonstrate the inability of the baseline kernel

to reconstruct non-repeated musical events and confirms the efficacy

of the proposed shift-invariant kernel for such cases. Moreover, even
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for repeated segments, the increase of the pool of similar frames led

to improvements over standard KAM.

4.4 a machine learning approach to kam for low snr

Even though the extensions presented above already partially allevi-

ate KAM framework’s limitations, they still rely on the assumption

that the energy in frames is dominated by the target source. Therefore,

while KAM is free of the need for suitable training data, it might fail

to find similar frames if the signal-to-noise ratio is low. In particu-

lar, in the presence of sudden and loud interferences, existing KAM

approaches are likely to fail.

To overcome such frailty we propose to combine the strengths of

two algorithmic families by adopting a machine learning approach to

inform KAM on the target source when it is overlaid by a more pow-

erful unwanted source. The idea is to include a preliminary step to

"learn" about the unwanted powerful source so we can then identify

it and reduce its impact. By doing so, one can then safely use KAM

assuming the target source to be dominant.

To improve the baseline frame-wise k-NN search in KAM and make

the kernel function more invariant against the overpowering signal,

we propose to build a first initial signal model using training data.

Most of the state-of-the-art machine learning methods are either based

on NMF variants or DNNs, as previously discussed in Section 2.2.

While supervised NMF might not be as precise as a DNN approach

to yield a high quality signal model necessary for source separation,

it might be discriminative enough to obtain an initial signal model

for the music at a lower computational cost. Therefore we propose to

employ NMF to create a preliminary signal model which can later be

used to design an adaptive, interference-resilient kernel for KAM.

More precisely, we let the user provide keywords to describe the

unwanted source (e.g. "cough") and retrieve corresponding record-

ings (i.e. training data) from the publicly available freesound2 archive.

2 https://www.freesound.org/

https://www.freesound.org/
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Concatenating these recordings into a single file, we compute its mag-

nitude spectrogram XN 2 RF⇥TN as well as an NMF factorization

into a basis (or feature) matrix WN 2 RF⇥R1

+ and an activation matrix

H 2 RR1⇥TN

+ such that

XN ⇡WN ·H (32)

where the only parameter is the NMF rank R1. To visualise the influ-

ence of such parameter, in Figure 12 we can find four learnt coughs

dictionaries WN for different NMF rank values R1. If the rank is too

high, e.g. the dictionary down right with 50 spectral basis, one can

easily see that the signal is overfitted and the abundance of detail di-

lutes the original broadband nature of the interference. On the other

hand, if the rank is too small, e.g. dictionary on the top left, there

is no room for an actual spectral characterisation and everything is

condensed into the reduced number of spectral bases, that end up

containing so much information it could correspond to any sound. In

consequence, for this particular example, either a rank 10 or rank 20

would suit better the application.

The NMF factorisation itself is accomplished using the well-known

Lee-Seung NMF updates for the generalized Kullback-Leibler diver-

gence DKL [76]; i.e. we minimize DKL(XN,WN ·H) over non-negative

matrices WN and H iteratively following:

H H�
W>

N
·RN

W>
N
· I

and

WN  WN �
RN ·H>

I ·H>
with

RN :=
XN

WN ·H

(33)

where I is the all-one matrix of size (F ⇥ T). After convergence, ei-

ther set by a cost threshold or a maximum of iterations, the columns

of WN contain templates reflecting the spectral properties of the un-

wanted overpowering interference signal.

Now we can employ NMF to model our input spectrogram X 2
RF⇥T using a combination of interference templates, WN 2 RF⇥R1

+ ,
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Figure 12: NMF learnt coughs dictionaries WN (Equation 4.4) for different
rank R1 values, to visualise the trade-off between them, going
from not being discriminating enough (R1 = 5) to overfitting
(R1 = 50).

and music templates, WS 2 RF⇥R2

+ , introducing another rank param-

eter R2, such that:

X ⇡WN ·HN +WS ·HS (34)

where the interference templates WN can be kept fixed and we only

need to learn the target templates WS, often referred to as semi-supervised
NMF.

More precisely, we now minimize the function DKL(X,WN ·HN +

WS · HS) over HN, WS and HS (i.e. we fix WN). In this case, the

update rules are:
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HN  HN �
W>

N
·R

W>
N
· I

,

HS  HS �
W>

S
·R

W>
S
· I

and

WS  WS �
R ·H>

S

I ·H>
S

with

R :=
X

WN ·HN +WS ·HS

(35)

After convergence, the rows of HN capture the activations of the

unwanted source templates, while WS ·HS yields an approximation

of the magnitude spectrogram of the target source. Using these two

interpretations, we employ these results for two different purposes.

First, we use HN to identify where the unwanted source is and in

this way, in contrast to existing KAM approaches, we can filter the

signal only where needed. To this end, we sum the values in HN in

each frame to obtain a single curve indicating the unwanted source

activity, as higher values indicate activation of the learnt templates

in WN and so presence of the unwanted source (or interference). In

order to be robust against the possible leftover activations of other

sources in HN, one could assume higher activation values to be those

corresponding to our unwanted source and use a simple threshold

to determine the unwanted source activity. However, such method

could lead to false negatives if the unwanted source is at some point

less powerful, for example, in the decay part of the sound. To alleviate

such issue, one can implement a smoother thresholding by assuming

that, if the unwanted source is likely to be active at some point in

time, it is also likely that it is active in the following time step, and so

incorporating previous states to the decision of the present one.

To this purpose, instead of using a fixed energy threshold to deter-

mine whether the unwanted source is active or not, we propose to

decode its activity using a hidden Markov model (HMM) as a flex-
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ible and dynamic "smart" threshold inspired by its use in different

audio applications [59, 94, 110]. The HMM smooths the normalised

energy HN taking into account the surrounding frames of those who

had energy above a certain threshold, to make a decision using previ-

ous states information. The HMM smoothing implemented has two

parameters that will vary the probability of a energy value to corre-

spond to the unwanted source state (1) or not (0). The first parameter

corresponds to a threshold to which each energy value is referred

to, and the second parameter is the cost of changing state represent-

ing the probability of a state to remain as it is. For ease of visual-

isation, here we represent both parameters by a set token "smart"

threshold THHMM. The result is a binary frame-wise state vector

nHMM 2 B1⇥T (1 if the unwanted source is present, 0 otherwise):

nHMM =

8
><

>:

1 if

P
f
HN

max(
P

f
HN)

> THHMM

0 otherwise

(36)

The parameters of the HMM, detection threshold and cost of chang-

ing state, should be adjusted to favour recall over precision in the

detection, because in this situation, it is preferred to process a frame

with little or no interference (i.e. false positive) than missing an inter-

ference frame entirely (i.e. false negative), leaving it untouched in the

final estimate of the target source.

Additionally, using the activations for the free templates HS, we

can reconstruct an initial rough estimate for the music, where the

unwanted source is strongly reduced as most of the corresponding

energy is already captured by the interference templates. Based on

this initial model, we identify for each frame affected by the interfer-

ence a list of similar frames, which are then used within the KAM

framework to produce the final output. In other words, having an

initial target source model not only serves to improve the query for

similar frames, but also helps with its reconstruction offering an alter-

native to nearest neighbours overlaid by the unwanted source. In this

way, the pool of nearest neighbours is increased, overcasting the un-

wanted source as an outlier and ultimately improving the separation

as previously discussed in Section 4.3.
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Figure 13: Individual steps in our proposed method, (A)-(D) using standard
KAM, (E)-(H) using our proposed extension: (A,E) current frame
used for similarity search, (B,F) first 10 closest frames found,
(C,G) estimated frame and (D,H) ideal clean frame.

More precisely, we can improve the k-NN search in KAM kernel by

replacing the input spectrogram X containing the interference with

the NMF approximation for the target source ŜNMF := WS ·HS. If the

interference is sparse enough, one can use the k-NN frames without

interference (informed by nHMM) of the input magnitude X and only

the NMF alternative ŜNMF for those k-NN overlaid by the unwanted

source, for the reconstruction of the target source through median

filtering. In other words, the frame wise k-NN search takes place on
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the NMF target source approximation, such that the frame t̃ is in

I(f, t) if t̃ is amongst the k most similar frames to t, where similarity

is measured as:
X

f

(ŜNMF(f, t)- ŜNMF(f, t̃))2 (37)

However, the k-NN will be selected either from the input magnitude

or the NMF approximation depending if they are overlaid by the

unwanted target source or not, reconstructing the magnitude target

source as follows:

Ŝ(f, t) := median

0

@
�

X(f, t̃) if nHMM(t̃) = 0

ŜNMF(f, t̃) if nHMM(t̃) = 1
| (f, t̃) 2 I(f, t)

1

A

(38)

In practice, this just means that the pool of good nearest neighbour

candidates increases, as the space of time frames doubles going from

t 2 X to t 2 X [ ŜNMF, and as mentioned above, this benefits the

median operator.

The resulting improvement is clearly visible in Figure 13. Replacing

the X-frame (Figure 13 A) with the corresponding ŜNMF-frame (Fig-

ure 13 E) in the similarity search, we see that the frames selected as

nearest neighbours (Figure 13 F) are much closer to the actual target

(Figure 13 D = Figure 13 H). The median filter can then remove re-

maining noise robustly, bringing the result (Figure 13 G) much closer

to the target (Figure 13 H).

Since the semi-supervised NMF is here providing two services, de-

tection of the unwanted source and creation of a preliminary target

source model, the choice of the rank R2 determining the number of

free templates to learn WS has some trade-offs to be considered. The

higher the rank R2, the more spectral bases are available for the target

source definition but also, the higher the chances are of overfitting

such source and redefining the interference. In other words, if the

number of spectral basis for the target source estimation in WS is too

high, some will be used to over-define the unwanted source, cause

the interference estimate to lose information and therefore affect its

detection. On the other hand, if the number of spectral bases in WS

is low, those intended for the interference WN could be activated to

characterise the unwanted source. In consequence, the rank chosen
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should be a good compromise between allowing enough spectral ba-

sis to characterise the target source and avoiding over-representing

the unwanted source in the target estimate (false positives are pre-

ferred over false negative activations).

An alternative to alleviate the semi-supervised NMF rank trade-off

is to do two rounds with two different ranks. One with a larger rank

focusing on yielding a good target source model and another with

a smaller rank favouring false positives on the interference detection

step. Even though this alternative does add computation time, it is a

quite simple solution to guarantee the best rank parameter choice for

each case.

A further problem we observed is that the kernel I was often chang-

ing considerably between frames in the sense that often (f, t̃) 2 I(f, t)

would not imply (f, t̃+ 1) 2 I(f, t+ 1). Without this property, however,

we observed a slight pitch jitter in the magnitude across frames after

median filtering, which was audible in the final time domain signal.

To further temporally stabilize the kernel function, we incorporate

a temporal context into the similarity search following Section 4.2.

Further, we found that filtering ŜNMF slightly in frequency direction

before the k-NN search using a small Gaussian kernel additionally

improved the results, as it makes the similarity search invariant to

small changes in the fundamental frequency of harmonic sounds.

4.4.1 Empirical evaluation

Similarly to Section 4.3.2, here we evaluate the proposed method for

a non-stationary burst-like interference reduction task. We chose in-

terferences that typically occur in a live or studio scenario including

cough sounds, door slams, sounds of objects of different material be-

ing dropped, chair-drag sounds as well as audience screams as seen

in Table 3. Similar to Section 4.3.2 and [32], we retrieved recordings

of interferences from freesound. This way, the method does not rely on

the availability of non-public training data and is easily extended to

other types of interferences. However, this also implies that the qual-

ity and number of training samples can vary, and thus explains why,
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in our case, each interference has a different amount of training data,

ranging from 10 scream samples to 40 coughs tracks (see Table 3). The

separation quality is expected to improve as the number of tracks in

the training data increases.

The music dataset contains 58 instrumental mono stems from the

freely available multitrack MedleyDB dataset [9], covering 23 differ-

ent instruments ranging from guitar, violin, piano over to bass, trom-

bone or flute as seen on Table 3. The choice for pitched instruments

without vocals can be explained by the choice of interferences used

in this study.

Since separating sources of the same nature is exceptionally chal-

lenging and all of the interference sounds present a dominant broad-

band aspect, it would be ambitious and out of scope for this evalu-

ation to attempt the separation of such interferences and broadband

instruments. Therefore, we choose pitched instrumental recordings

as our target sources in order to evaluate the approach presented on

a well defined problem that would not introduce added difficulties

unrelated to the methodology under test. In addition and for similar

reasons, vocal recordings have not been considered in this study as

they represent a major separation challenge on their own.

We created test recordings by making artificial linear mixes of the

instrumental mono stems and the test interference recordings inde-

pendent of the training data and of each other (other acoustic con-

ditions). In order to achieve a controlled mix of instrumental and in-

terference levels, all tracks were normalised to a specific RMS energy.

Then three interferences are added to the music at different SNR, mea-

sured on the segment where the interference is active. The final mix

is a 30s long monaural recording with three different sounds of the

same kind interfering at different times at a certain SNR.

We evaluated the proposed method on the resulting 290 mixtures

(58 instrumental stems times 5 types of interferences), measuring the

separation performance using the BSS Eval toolbox [132], obtaining

a SDR and SIR for each mixture separation. To indicate the improve-

ment over the raw music-interference mix, we employ the normalized

SDR/SIR (NSDR/NSIR) as in [81]. This way, we can account for the
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Music Interferences

Test Test Training tracks

Banjo 1 Coughs 3 41

Basoon 1 Door Slams 3 15

Bass 1 Sceams (male and female) 3 10

Double Bass 4 Chair sounds 3 10

Cello 2 Object drop sound 3 10

Clarinet 5

Dizi 2

Erhu 2

Flute 4

French Horn 2

Guitar Acoustic 5

Guzheng 2

Mandolin 1

Oboe 3

Piano 4

Saxophone 5

Trombone 1

Trumpet 5

Viola 2

Violin 2

Yanggin 2

Zhongruan 1

Table 3: Summary of the dataset tracks used for this evaluation.
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NSDR NSIR

0dB -3dB -6dB 0dB -3dB -6dB

Prop. 6.78 4.76 2.52 16.79 15.30 13.69

NMF 4.76 3.16 1.13 13.15 14.40 15.62

Table 4: Comparison of our method with supervised NMF for different SNR
values.

fact that a separation at a low SNR is more difficult than at a high

SNR, making results for different SNRs more comparable.

Here we have chosen supervised-NMF to represent the current

state-of-the-art method (following Equations (34) and (34)) to quanti-

tatively compare its separation performance to the proposed method.

In order to obtain a competitive baseline, we use the same learned dic-

tionary for both methods and we also optimise the NMF rank with

a parameter sweep. Tables 4 and 5 show the overall results, averaged

across all NSDR/ NSIR values of every mixture, for our proposed

method as well as for the semi-supervised NMF approach. Compar-

ing the results, our proposed method yields a higher separation qual-

ity than the NMF-based method not only for a 0dB SNR mixture, but

also for mixtures where the interference is 3dB and 6dB above the in-

strumental RMS energy. Overall, we obtain an improvement between

1.4 and 2.0dB, which from a relative point of view is quite consider-

able.

In order to measure the influence of the individual components of

our proposed method, Table 5 shows results separately for several

variations of our method. In addition, to provide another angle on

the results and focus on the positions where the interferences actu-

ally happen, we evaluated the separation performance by averaging

across the three segments in the mix where the interference is active

in Table 5 , and so the resulting NSDR scores are not directly compa-

rable to Table 4.

Starting with a baseline frame-wise k-NN kernel KAM approach,

as described in [41], Variant V1 adds the NMF interference detection

step introduced in Table 5. The high NSDR shows the interference
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NSDR NSIR

V1: Standard KAM +
7.09 13.62

NMF Interference Detection

V2: V1 + NMF-based Kernel Similarity +
7.92 15.48

Temporal Context

V3: V2 + Adaptive Frame Selection +
8.84 14.53

Smoothing (Proposed Method)

Table 5: Influence of individual KAM extensions on the separation result
(interference at 0dB SNR; separation evaluated on the segments af-
fected by an interference).

was successfully identified and reduced. Variant V2 further adds the

improved similarity measure of our proposed method, where sim-

ilarity is measured based on a rough NMF estimate of the signal.

Additionally, the frame-wise similarity search used in standard KAM

(and Variant V1) is modified to account for the local temporal con-

text in V2 as introduced in Section 4.2. The higher NSDR shows that

the temporal context stabilizes not only the kernel but also the re-

sults. In this context, it is important to remark that our test signal are

only 30 seconds long – for longer signals with additional repetitions

of musical patterns, we would expect even higher improvements in

NSDR. Overall, both extensions improve the capability of our method

to better identify and select similar frames and thus to increase the

performance of the median filtering step.

Variant V3 is an extension of Variant V2 incorporating the smooth-

ing filter and the adaptive frame selection, which replaces frames in

the median filter in which an inferences was detected with the corre-

sponding frames from the NMF estimate. As shown in Table 5, both

extensions further improve the NSDR over variant Variant V2. How-

ever, the NSIR values are sometimes lower – in our experiments, we

found this to be a side effect of the smoothing filter, which slightly

blurs the spectrum, leading to a tendency of leaving more residual en-

ergy in the output. However, overall, these results show that each of

our proposed extensions measurably improves the separation quality.
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4.5 how do we pick k?

A successful separation of the target source relies largely on the in-

terference actually being outliers within the selection of the k closest

frames as discussed in Section 4.3.

We want to make sure that the k-NN frames have a similar contri-

bution of the target source with no or different overlaying unwanted

interference (refer back to Figure 9). However, there are also frames

matching both wanted and unwanted sources which will then be very

likely to be selected as near neighbours. Those frames are unhelpful

for the median filtering but since the breakdown point of the median

operator is of 50% of outliers (vocals), the method is robust to the

unwanted repetitions up to a point. This robustness is closely related

to the number of nearest neighbours we choose, i.e. the parameter k.

There seems to be little or no indication on a method to find the

optimal parameter k in the literature [41, 82, 106]. In [106] the authors

introduce three other parameters to set boundaries for the choice of

k. However, no indication was found on how to actually fix any of

those parameters, including k.

To our knowledge, there are currently two broad approaches to

setting k: perceptual assessment or evaluation metric optimisation

(later also referred to as parameter sweep). In the first approach one

simply listens to the estimates for different k values and adjusts the

parameter to the best sounding setting. This is the preferred method

to set k when there is a reduced number of songs to be processed.

The second approach relies on a metric, typically the Signal to Dis-

tortion Ratio (SDR), comparing the estimated sound sources with the

ground truth. One will then set k to obtain the best metric result. In

practice, this means a parameter sweep for different k values (similar

to the temporal context optimisation shown in Figure 7), for which no

indication was found on how to pick. Essentially, one makes an ed-

ucated choice of k values and picks the one yielding the best metric

performance.
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Since the evaluation metrics are often costly to compute, the num-

ber of k values one can try out is reduced, which comes with the risk

of missing the optimal k value. In addition, for the same reason it is

common practice to perform the parameter sweep over the entire test-

ing dataset and pick the k value maximising the mean SDR, instead

of finding the optimal value for each track, disregarding individual

(potentially crucial) characteristics such as the song length.

However, when dealing with large datasets, perceptual assessment

of the results can be very time consuming. Therefore, the second

method involving a parameter sweep is more popular even though the

common metric used for the optimisation (i.e. SDR) is known to be a

proxy for perceptual quality and its precision has been criticised [18].

Overall one could argue that the parameter sweep approach has a

number of disadvantages, primarily linked to the optimisation through

a performance metric. Firstly, the separation performance metrics

usually require to have ground truth separate tracks available, which

is not always possible in an application scenario. Further, the com-

monly used separation performance metrics are computationally ex-

pensive [132], limiting the parameter sweep to a reduced number of

values in a time constraint situation. In addition, optimising k using

an overall performance metric does not assure the best value for all

songs in the dataset. Moreover, fixing the k sweep values leaves no

room to inform the optimisation with the track’s individual proper-

ties.

Ideally we would like to be able to automatically pick k in an unsu-

pervised way for each track separately, taking into account the nature

of the song and thus finding a tailored value for k assuring a suc-

cessful separation. We would also like to do this without having to

perform multiple runs of source separation and discarding all but one

of them. In the following part of the thesis we will present how to do

so by taking a different perspective : graphs.



4.6 summary 86

4.6 summary

The success of separation in KAM heavily depends on the ability

of the kernel to identify similar frames in the presence of overlay-

ing sources. Using just a squared Euclidean distance between entire

frames, this notion of similarity, however, can be quite limited. Firstly,

this kernel choice assumes that the target source repeats in both time

and frequency, meaning the position of partials and other objects can-

not change. Secondly, it assumes the energy in the time frames of the

given mixture to be dominated by the target source.

In this chapter we have investigated the common scenarios where

these conditions fail to be true and consequently we proposed sev-

eral extensions to the KAM framework to improve its flexibility un-

der such circumstances, summarised in Table 6. We introduce a tem-

poral context in the kernel function which temporally stabilises the

target source estimate improving the separation performance in Sec-

tion 4.2. We then present in Section 4.3 a shift-invariant kernel func-

tion introducing a degree of freedom to the similarity search in the

frequency direction. Finally we incorporate a machine learning ap-

proach to overcome a low SNR scenario where the target source is

overpowered by an unwanted interference, by combining for the first

time NMF and KAM. We close this chapter by pointing out the lack

of discussion in the literature about the sole parameter of the KAM

framework, k, and we point towards the following Part of the thesis

were we will expand on this subject and present a new perspective

on it based on graphs.

KAM limitations Prop. Extensions Application Introduced Parameters

similarity metric �! temporal context in kernel Vocal separation C

not repeating source �! Shift-Invariant KAM Interference reduction �, ↵, P

low SNR conditions �! NMF + KAM Interference reduction R1, R2, THHMM

how to set k? �! ? ? ?

Table 6: Summary of KAM limitations and the extensions proposed in this
thesis



Part III

B E Y O N D T H E M A G N I T U D E D O M A I N :
G R A P H S

The required graph theory concepts are introduced to then

explore the graph structure within KAM and propose an

automatic parameter optimisation method. A novel repre-

sentation for audio is introduced based on visibility graphs,

a powerful tool for time series analysis that can now, for

the first time, be computed on-line with a proposed method.



5
E X P L O I T I N G T H E G R A P H S T R U C T U R E W I T H I N

K A M

From the discussion in the previous Chapter 4, we can state that the

performance of KAM fundamentally depends on the nearest neigh-

bours. The size of the set (i.e. the number of selected nearest neigh-

bours) is determined by the parameter k and there appears to be a

gap in the literature on its influence and optimisation, even though

one could expect the choice of k to be crucial for a successful sepa-

ration as discussed in Section 4.5. Here we investigate the influence

of the parameter k in a vocal separation task and we further propose

a novel method for its automatic optimisation, based on considera-

tion of the proximity graph, which is lightweight and needs no prior

training.

We start of by introducing the notion of graphs in Section 5.1 and

the concepts and definitions from graph theory necessary to under-

stand the following sections. We will then explore the graph structure

within KAM in Section 5.2 and propose a novel computationally inex-

pensive method to optimise the parameter k based on graph theory

statistics in Section 5.3. We will further analyse and discuss the im-

pact of this parameter through an experimental evaluation and vali-

date the proposed method in such scenario in Section 5.3.1.

5.1 preliminaries : what is a graph?

note : Here we will go through some definitions necessary for the following

sections, serving as a brief overview of some graph theory notions. For a full and

detailed explanation of graph theory concepts please refer to [4, 71, 136].

88
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A graph G is a triple consisting of a non-empty finite set V(G) of

elements called nodes (or vertices), a finite set E(G) of edges (or arcs)

and a relation associating each edge with its endpoints (i.e. two nodes

not necessarily distinct). One can represent an edge as a pair of nodes

and regard the nodes as the fundamental element to form a graph.

The graph is said to be finite if both the node and edge sets are finite,

and null if they are both empty. In a finite graph G, the total number

of nodes is referred to as the order of the graph n(G) and the total

number of edges as the size of the graph e(G). A subset G 0 of G such

that V(G 0) ✓ V(G) and E(G 0) ✓ E(G) is called a subgraph and G is

said to contain G 0. Usually we illustrate a node as a circle (or point)

and an edge as a curve connecting two nodes, as showed in Figure 14.

Edge A-B

Node A Node B

Figure 14: Simple graph composed by two nodes and an edge joining them.

Here we will focus on simple graphs, which contain at most one

edge between two distinct nodes. This means nodes cannot be con-

nected to themselves (i.e. loops) and that there are no multiple edges

between two nodes. Two nodes connected by an edge are said to be

neighbours or adjacent. Therefore, we can define the adjacency matrix
A(G) of the simple graph G with a node set V(G) = v1, v2, ..., vN of

size n(G), as a n(G)⇥n(G) matrix where each entry aij contains the

number of edges in G with endpoints vi, vj. In a simple graph this

matrix will be binary, as the nodes are either connected by one edge

(i.e. aij = 1) or not connected (i.e. aij = 0), with 0s in the diagonal as

there are no loops. The adjacency matrix is also symmetric.

A path is a simple graph whose nodes can be ordered so that only

consecutive nodes are connected. If the number of nodes and edges

is equal and only sequential nodes are connected, the path is called

a cycle. In other words, a cycle is a path that begins and ends on the

same node. The red and green edges in Figure 15 are paths examples,

but only the red path in Figure 15.c is a cycle. A path or a cycle is

said to be Hamiltonian if all the nodes in the graph are included once
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F G

a. Disconnected

A C

D E

F G

b. Connected

A C

D E

F G

c. Connected -

Hamiltonian cycle highlighted

A C

D E

F G

d. Fully Connected -

Hamiltonian path highlighted

Figure 15: Types of graphs classified by their connectivity. Hamiltonian
paths examples in red.

and only once. Both paths in red in Figure 15 are Hamiltonian and

therefore, graphs in Figure 15.c and d are said to be Hamiltonian too.

If all the nodes are connected to each other like in Figure 15.d, the

graph is said to be fully connected or complete and are always Hamilto-

nian. However, if the graph is said to be just connected, it means there

is a path from any node to any other node in the graph but it does

not guarantee a direct connection between nodes as in a complete

graph, as shown in Figure 15.b and c. If the graph is not connected it

is simply said to be disconnected (Figure 15.a).

We can further classify graphs depending on the nature of their

edges. If the set of edges is a set of ordered pairs of distinct nodes,

the graph is called a digraph and it is said to be directed. On the other

hand, if the set of edges is simply a set of unordered pairs of nodes,

the graph is said to be undirected. As seen in Figure 16, unlike an undi-

rected graph (Figure 16.a) where the edges are simply represented by

straight lines, the edges of a directed graph (Figure 16.b) are repre-
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w1

w2

w3

a. Undirected b. Directed c. Weighted

Figure 16: Types of graphs classified by the types of edges.

sented by arrows with a tail and a head to indicate the order. We say

the edge leaves the node at the tail and enters the node at the head. In

a directed graph the connection between nodes is therefore not neces-

sarily symmetric, whereas the connections of undirected graphs are

symmetric and can be regarded as a special class of directed graphs

(i.e. symmetric digraphs).

If the connections between nodes are not all equal, weight values

are usually allocated to the edges and the graph is referred to as

weighted (e.g. Figure 16.c). Such weights are often used to record tran-

sition probabilities, and in the case of Markov chains, the probabilities

of all the edges leaving a node sum up to 1.

The set of edges incident to a node v is referred to as the degree of

such node d(v) and its value is represented as  1. In Figure 17, there

is a sample graph with 7 nodes. The degree of node F is highlighted

and equal to 3 as it is connected to three nodes (A,B and G) and

therefore has 3 incident edges. The degree of a node can be deduced

by summing the entries of the adjacency matrix in either the row or

column for that node. As it can be seen in In Figure 17, by summing

the columns one can obtain a degree vector ~ containing the degree

value for every node in the graph, and therefore retrieve the value 3

for node F highlighted in green. For directed graphs, one can define

the out-degree d+(v) as the number of edges with tail in node v and

the in-degree d-(v) as the number of edges with head in node v. The

degree in such a case will be the sum of the out and in degree.

The -ocurrence of the graph captures the number of nodes n with

a degree  and can be represented by the histogram of ~ as shown

1 The standard notation for the degree of a graph is the letter k. However, in this
dissertation k refers to the number of nearest neighbours in the kernel. Therefore,
we have opted to use the greek letter kappa  to refer to the degree of a graph.
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Figure 17: Visualisation of an a graph example G, its adjacency matrix, de-
gree , degree vector ~, -ocurrence and degree distribution.

in Figure 17. The degree distribution can be understood as the nor-

malised -ocurrence by the order of the graph n(G), representing the

probability of a node to have a degree  in such a graph (red dots in

Figure 17).

5.2 properties of the k-nn graph

We can exploit the graph structure within KAM by defining a prox-

imity k-NN graph, where the nearest neighbour relationships are

represented as a directed graph D. In such a graph, the nodes rep-

resent the time frames of the given mixture magnitude spectrogram

X 2 RF⇥T

+ , so the order of the graph will always be the total number

of time frames T . Every frame has k nearest neighbours and so each

node has k edges leading outward to its nearest neighbours nodes.

The size of the graph will therefore always be k ⇥ T .

In Figure 18 we find an example of a k-NN graph for k = 3 of

order 7. Note that if frame i is a neighbour of frame j, the reverse

is not necessarily true. For example, the nearest neighbours of node
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4 5
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Figure 18: Illustration of a k-NN graph for k = 3, where every node repre-
sents a time frame t 8 t 2 [1, T ] of the mixture magnitude spec-
trogram X 2 RF⇥T

+ . In this example the total number of frames
T of the supposed time-frequency representation encoded in this
k-NN graph would be 7 (i.e. the total number of nodes).

5 in Figure 18 are the time frames 2, 3 and 4; however, 5 is only a

nearest neighbour to 3 and 4 and not for 2. At extreme settings, if

k = 0 (no nearest neighbours) then the graph has no arcs and thus

no useful structure, while if k = T the graph is fully connected (all

nodes have the same degree  = T ) and likewise exhibits no useful

structure. What are desirable characteristics for a k-NN graph to be

used in KAM?

Unlike many problems defined on a graph, in KAM we do not

wish our graph to take on a simple structure such as well-separated

clusters: instead, we want all frames to have connections to frames

which are similar according to the current source kernel, but dissimi-

lar in terms of the other sources as discussed in detail in Section 4.3.

It is not clear how these structural considerations can be best quanti-

fied numerically, though such structure would have some impact on

summary statistics considered in graph theory.

Consider a vocal separation scenario where the target source is the

accompaniment music. A set of frames containing a background mu-

sical phrase which is repeated often is expected to form a densely

connected component in the graph. On the other hand, the frames

containing sparsely-present and variable vocal energy would be ex-

pected to have arcs pointing to that densely connected component

but few arcs pointing back out to them. Therefore, the number of in-

coming arcs (i.e. in-degree) would be unevenly distributed across the
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Figure 19: Illustration of how hubness relates to skewness. Two example k-
NN graphs G (left) and Z (right) for k = 3 and k = 2 respectively
of order 7. Graph G node 2 is a hub, therefore the hubness of G
is greater than that of graph G which contains no hub, as it can
be seen from the shape of the  --ocurrence distribution and its
skewness value.

nodes, directly as a result of the observed signal properties which one

assumes in KAM.

One way to analyse such properties in graph theory is the concept

of hubs, which are nodes with an unusually high in-degree [105]. For

example, node 2 in Figure 18 represents a hub in the given graph

as its in-degree, d-(2) = 6, is considerably higher the rest of nodes.

This has been of particular influence in social network theory as re-

searchers studied effects such as "small world" phenomena, which

can have important effects such as the speed at which news or illness

spreads through a social network [64, 135] .

For a given graph, one can define summary statistics which reflect

the general presence of hubs. One referred to as the hubness is simply

the skewness of the -occurrence statistics. In this case, the skewness

of the distribution of the in-degrees  - of nodes in the graph. Here,

the  - of a frame corresponds to the number of times that frame is

amongst the k nearest neighbours, and the hubness is therefore the
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skewness of the distribution of all frames’ k-occurrence. Figure 19

shows two k-NN graphs examples, G (left) and Z (right), and their

corresponding  --occurrence distributions on the second row along

side the skewness value for each one of them.

In a k-NN graph we assign a fixed number of edges, and so the

average in-degree is always k; however if the graph contains strong

hubs, as graph G in Figure 19, then the skewness of the in-degree

will be high. This can be seen in the second row of Figure 19, where

the skewness of G is clearly higher than that of Z, indicating higher

hubness.

5.3 how to pick k

For the family of methods of KAM of study in this thesis (refer to

Section 3.2), in a vocal separation application, it is clear that a graph

with relatively high hubness should typically be one which has appro-

priate structure. As discussed in Section 4.5, we typically have very

little a priori guidance over what value of k to choose, so it is advan-

tageous that, for each track separately, we can iterate over a selection

of possible k, inspect graph statistics such as hubness for the graphs

thus produced, and select k which produces the optimal statistics.

Therefore, we here propose to select the k producing the maximum

hubness of the associated k-NN graph.

However, in a situation where we vary k, the hubness h will vary

even in the null case of a randomly-constructed graph. (This can be

seen in the extreme cases: for k = 0 or k = T the graph is symmetric

and the hubness is 0, whereas for other k it can be non-zero.) A

standard null model can be generated by selecting k neighbours for

each frame purely at random. The distribution of k-occurrences in

this null model follows a binomial distribution with parameters T

and k/T , leading to an expression for the expected hubness as:

hnull = (1 - 2k/T )/
p

k(1 - k/T ) (39)
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We can thus define a normalised hubness hnorm statistic as the ‘excess’

hubness, i.e. the raw observed hubness minus the hubness expected

under the null model,

hnorm = h - hnull (40)

which should then be less biased than the raw hubness in selecting k.

We can think of the normalised hubness as a de-noised version of the

raw hubness.

However, the above null model is one of the simplest random graphs

and we found the scale of its hubness statistic to differ from that of

the raw hubness, larger than in the simple null model. In practice,

graphs constructed from high-dimensional similarity measures do

not behave strictly in that fashion, and it is an ongoing research topic

to model how k-NN graphs behave in general [105]. Here we simply

rescale both raw and null model hubness through max normalisation,

taking the maxima across the sweep of k settings.

Using the maximum hubness as a metric to choose k has numerous

advantages:

1. It does not require any ground truth information

2. k is optimised per track as a pre-processing step before the sep-

aration actually takes place

3. It is quick to compute so we can sweep through a lot of different

k values, so we can have a finer optimisation

4. The hubness has been demonstrated to have perceptual rele-

vance for song similarity in music recommendation [48], sug-

gesting that it reflects properties of the nearest neighbour graph

that have impact on its applied use. However, it has not been

used for frame selection in KAM and so that is to be explored

here.
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Figure 20: Median SDR and hubness across all songs in Test DSD100 for
different fixed k values

5.3.1 Empirical evaluation

To evaluate the proposed method, we quantitatively compare it against

the standard parameter sweep for setting k described in Section 4.5

for a vocal separation task. We chose to follow the vocal separation

method [41] described in Chapter 4 with FFT size of 4096 and hop

size of 1024 samples, as it represents a baseline instance of the larger

KAM framework.

To encourage reproducibility, we use the publicly available Test

Demixing Secrets Dataset (DSD100) [83], containing 50 full length

songs of diverse genres sampled at 44.1 kHz. Since the kernel im-

plemented relies on musical repetition, we evaluated our proposed

method on full length songs to ensure as much sound material as pos-

sible for KAM’s source reconstruction. However, the literature only of-

fers some indication on k values for 30 second segments. We therefore

use a broad range of fix k values for the standard parameter sweep (re-

fer to Section 4.5), letting k 2 {0, 25, 50, 100, 200, 400, 800, 1600, 3200},

and a finer percent increase sweep for the computationally inexpen-

sive proposed method taking the song length into account, letting

k 2 {(0.001, 0.011, 0.021, 0.031, ..., 0.45) ⇥ T } where T is the total

number of time frames in the song.

Following common practice in the field, we employ the Signal to

Distortion Ratio (SDR) in the BSS Eval toolbox 3.0 [132] as the quan-
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Fig. 2. SDR Boxplot of every song in the Test DSD100 dataset for di�erent k values.
The maximum and minimum SDR obtained for each song are marked in blue and
orange respectively, showing a general trend of higher separation performance with
increasing k value.

Following common practice in the field, we employ the Signal to Distortion
Ratio (SDR) in the BSS Eval toolbox 3.0 [11] as the quantitative indicator of
the separation performance. Therefore, we would expect to observe a positive
correlation between SDR and hubness for di�erent k values. Due to the diversity
of styles in the dataset, one could also expect an improvement in the overall sep-
aration performance (and so SDR) by using a tailored k for each song following
the proposed method.

According to the standard method to fix k, one would pick the value with a
higher overall SDR, here (Fig.1) is the highest k of 3200 frames. Alternatively,
the positive correlation between the hubness and SDR seen in Fig. 1 suggests
the hubness to indicate the optimal k value for a successful separation.

Moreover, the similarity between boxplots in Fig.2 for di�erent k values sug-
gests there might not be an unique k that maximises the SDR of every song in the

k values
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Figure 21: SDR Boxplot of every song in the Test DSD100 dataset for dif-
ferent k values. The maximum and minimum SDR obtained for
each song are marked in blue and orange respectively, showing a
general trend of higher separation performance with increasing
k value.

titative indicator of the separation performance. Therefore, we would

expect to observe a positive correlation between SDR and hubness

for different k values. Due to the diversity of styles in the dataset,

one could also expect an improvement in the overall separation per-

formance (and so SDR) by using a tailored k for each song following

the proposed method.

Note that with the proposed method we can afford checking for

more k values and for every track, as computing a parameter sweep

maximising the hubness is more efficient than one maximising the

SDR. This is mainly because the hubness analysis is done in the time-

frequency domain unlike the SDR, which requires a time domain esti-

mate and ground truth. Therefore, in the proposed method one only

needs to calculate the similarity within frames once and then produce

the necessary k-NN graphs for hubness analysis without having to re-
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Figure 22: SDR Boxplot of different k value for each song in the Test DSD100
dataset, briefly informally described in the top axis and sorted in
ascending variance order. The SDR obtained with the maximum
k value of 3200 for each song is marked in blue showing the
different behaviour between songs.

calculate the similarity, nor perform the separation through masking,

nor convert to time domain for every k. In addition, one can imple-

ment a standard hubness measure in O(Tlog(T)), where the current

SDR implementations 2 appear to be at least quadratic in the length

of the signal, adding significant computation cost to the parameter

optimisation process.

According to the standard method to fix k, one would pick the

value with a higher overall SDR, here (Fig. 20) is the highest k of 3200

2 Example SDR implementation can be found here: https://github.com/sigsep/

sigsep-mus-eval

https://github.com/sigsep/sigsep-mus-eval
https://github.com/sigsep/sigsep-mus-eval
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Figure 23: SDR values for each song in the Test DSD100 dataset sorted in as-
cending order, using the optimal k issued from the standard and
proposed method, in comparison to the SDR of the raw mixture
(i.e. k=0).

frames. Alternatively, the positive correlation between the hubness

and SDR seen in Fig. 20 suggests the hubness to indicate the optimal

k value for a successful separation.

Moreover, the similarity between boxplots in Fig. 21 for different k

values suggests there might not be an unique k that maximises the

SDR of every song in the dataset. However, the markers in Fig. 21

show differently as most of the songs obtained a higher SDR with

the highest k value. This behaviour comes as a surprise taking into

account the dataset’s disparity. Most tracks were expected to peak in

SDR for lower k values than 3200 frames, which seems to be so many

frames that it should generally surpass the 50% of outliers break-

ing point of the median operator. The abundance of highly repetitive

songs could potentially explain how such a large k could be success-

ful, although the literature indicates the SDR may not be a reliable

metric of the actual separation performance [18].

Fig. 22 offers a different perspective on the individual song be-

haviour which should shed some light on the above dilemma. As

expected, very repetitive songs such as track 45, 4 or 50, achieve a
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higher SDR with highest k values. However, it is also the case for un-

conventional pop songs such as 43 or 17, where the variance in SDR

is extremely low (less than 0.05). For such cases the separation may

not have been successful, but Fig. 23 shows otherwise as the median

SDR is above the mixture’s SDR (equivalent k = 0). Further, the over-

all SDR variance is surprisingly low, with a median of 1.4dB potential

SDR increase by changing k (maximum of 3.57dB and minimum of

0.17dB). With such a low potential SDR improvement, one might won-

der if k actually matters at all or again, if the SDR is failing to capture

the actual separation performance.

The majority of cases where different values of k induce substan-

tial changes in SDR correspond to popular songs with a classic pop

musical set-up and repeating musical structures (Fig. 22)—the ideal

scenario for the implemented KAM vocal separation as described in

[41]. One could therefore infer that a track sensitive to different k

values (i.e. higher SDR variance), fulfills KAM requirements for a

successful source separation. Track 44 presents an excellent example

as it has a high SDR median and high SDR variance (2.72 dB of po-

tential SDR improvement). However, most of the tracks in the dataset

fail to present such characteristics, introducing a question regarding

the flexibility and adaptability of the implemented KAM for vocal

separation.

Songs which fulfill KAM ideal requirements for vocal separation

(sensitive to k or highly repetitive) are expected to present higher SDR

values than more complex songs. However, Fig. 22 does not present

such logic, which makes one further wonder if the SDR is indeed

an adequate choice for performance evaluation or whether the kernel

function should be further refined. Since recent research [18] seems to

also doubt the choice of SDR as an evaluation metric, we can, for now,

safely attribute the observed behaviour to the doubtful correlation be-

tween perceptual and SDR performance evaluation. In consequence,

and to promote future perceptual studies on the matter, the source

code is available online along side a web demo 3 that allows the user

to listen to vocal separation results for a selected k.

3 Available at https://github.com/delialia/kam-demo

https://github.com/delialia/kam-demo
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KAM limitations Prop. Extensions Application Introduced Parameters

similarity metric �! temporal context in kernel Vocal separation C

not repeating source �! Shift-Invariant KAM Interference reduction �, ↵, P

low SNR conditions �! NMF + KAM Interference reduction R1, R2, THHMM

how to set k? �! k-NN graph hubness indicator Vocal separation none

Table 7: Summary of KAM limitations and the extensions proposed in this
thesis

Nevertheless, Fig. 23 shows the proposed method can be used as

substitute to the current technique for fixing k. Both methods present

similar results in most cases and although the proposed one presents

lower SDR for some songs, it seems a small trade-off for a consider-

able decrease in computation time (in our experiments 1000 times

faster than the standard method).

5.4 summary

In this chapter we introduced the notion of graphs and their prop-

erties and we showed how can it be beneficial to the KAM frame-

work. In particular, we propose to exploit the natural graph structure

of KAM by defining a k-NN graph from the mixture spectrogram.

Such a graph representation offers a new perspective to the model

as its topology is essentially determined by the sole parameter in the

framework, k. Therefore, we propose to use the statistics of the k-NN

graph as an indication on how to set k, starting a new discussion in

the field which currently lacks a standard methodology to optimise

such a parameter.

We concentrated on a vocal separation task where the background

music is said to be highly repetitive in comparison to the vocal ac-

tivity. In such an application, we propose to use the skewness of

the degree distribution ("hubness") to inform the choice of k. We ex-

pect frames containing only background music to be popular nearest

neighbours and therefore, appear as hubs in the corresponding k-NN

graph. Therefore we propose to set k to the value maximising the hub-

ness of the k-NN graph. The proposed method to automatically fix k

is the first of its kind and allows for a quick computation at track level
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(instead of the standard way of fixing k for a whole dataset) without

the need of any training data. We can now therefore complete Table 7

and add the hubness as an indicator to pick an optimal k value.

In the following chapter we will continue to explore the use of

graph theory in audio and question the use of time-frequency magni-

tude domain as the standard representation for audio tasks such as

source separation. We take a step further by proposing a new graph-

based representation for audio with particularly useful properties for

audio related tasks.



6
I N T R O D U C I N G V I S I B I L I T Y G R A P H S F O R A U D I O

In Chapter 4, we discussed the importance of finding the appropriate

nearest neighbours for the subset of methods in KAM employing the

k-NN kernel function. Success in finding the suitable candidates ulti-

mately relies on how we model the target source and on the model’s

ability to differentiate the target source from unwanted overlaying

sources. For example, in Section 4.4 we show how the basic KAM

source model fails to identify the target source in presence of an over-

powering overlaying interference, and how we can improve the model

by introducing a preliminary supervised step generating an alterna-

tive interference-reduced signal representation.

Both of these models, as well as most of the models in the literature

(refer to Chapter 1), operate in the time-frequency domain. Here we

challenge that standard and question whether a change in the chosen

data representation would bring a new perspective helpful to over-

come the challenges imposed by the current methodologies. Follow-

ing the discussion in Chapter 5, one may wonder what is the room for

improvement left within the time-frequency domain and could argue

that only a shift of paradigm would result in a considerable advance.

In Chapter 5 we introduced the notion of graphs and exploited

the graph structure in KAM to automatically set its sole parameter k.

Here we continue exploring the benefit of introducing graph theory

to audio tasks by considering novel graph-based representations for

audio signals.

Graphs are a tool of growing interest in the signal processing com-

munity for data representation and analysis. Their structure offers a

new perspective, often unveiling non trivial properties on the data

they represent. In the last decade, several methods to map time se-

ries into graphs have been proposed under the hypothesis that ap-

104
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propriate graph representations can preserve information from the

original time series while dealing with non-linearity and multi-scale

issues typical of complex signals [27, 97]. This line of research rep-

resents a bridge between nonlinear signal analysis and complex net-

work theory, and has been successfully applied to extract meaningful

information from a variety of different systems in physics [67, 119],

finance [38, 66, 93], engineering [129], and neuroscience [13, 14].

The most notable algorithms to construct a graph from an ordered

sequence of data points are either based on correlation [10, 87, 139],

recurrence [25, 26, 37], dependence [79, 88], or visibility [68]. The

visibility algorithms proposed by Lacasa et al. [68, 85] are amongst

the most popular as they provide a deterministic and non-parametric

mapping of a time series preserving full information of its linear and

non-linear correlations. Such visibility algorithms can also effectively

deal with non-stationary signals and are deemed computationally ef-

ficient. In consequence, visibility graphs have found numerous appli-

cations in diverse fields including image processing [61, 65], number

theory [69], finance [47, 66], and neuroscience [112].

Every node in such a graph represents a datum of the time series,

and two nodes are connected if they fulfil the "visibility" criteria anal-

ogous to the visibility between points on a landscape. The visibility

between data will only depend on their relative height and location,

creating a graph structure capturing the links between data. The suc-

cess of this simple visibility mapping is partly due to its powerful

properties. Visibility graphs preserve characteristics of the time series

such as periodicity [98], and are invariant to several transformations

of the time series, such as vertical and horizontal rescaling. Visibility

graphs and their properties are fully defined in Section 6.1.

In Section 6.2 we introduce visibility graphs applied to magnitude

spectra. Such a graph will preserve all the properties of visibility

graphs as its construction remains the same. Therefore, as with time

series, the visibility graph of spectra may reveal hidden structures in

the signal not apparent in the magnitude domain. In particular, we

focus on musical audio signals, and we propose the spectral visibility

graph degree as a novel representation for audio analysis. We demon-
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strate its use for robust similarity measures of harmonic signals in the

empirical evaluation in Section 6.2.1.

The final Section 6.3 of this chapter addresses the computation of

visibility graphs, which in its straightforward mode, presents a worst

case time complexity quadratic in the length of series. Even though

faster algorithms have been proposed, the current existing methods

to compute visibility graphs are off-line algorithms and so require

all data points in time series to be available before the graph is con-

structed. Such a rigid computation represents a major shortcoming

limiting the real-world applications of visibility graphs. As an alter-

native, we present in Section 6.3 , to the best of our knowledge, the

first algorithm capable of computing visibility graphs on-line, whilst

maintaining the efficiency of state-of-the-art algorithms.

6.1 visibility graphs

A visibility graph is obtained from an ordered sequence of values by

associating each datum to a node and connecting two nodes with an

edge if the corresponding data points are visible from each other. A

point a is visible from the point b if one can draw a straight line from

a to b without passing underneath any intermediate points. In this

thesis we will consider visibility as a symmetric relation, and so the

resulting visibility graphs are undirected.

The natural visibility criterion (NV) allows the visibility line be-

tween a and b to take any slope [68], whereas the horizontal visibility

criterion (HV) is restricted to horizontal lines [85], as shown in Figure

24.a and b respectively. More precisely, given a time series

y = g(t) (41)

of length n, two points (ta,ya) and (tb,yb) are said to be naturally

visible if every intermediate point (tc,yc), such that ta < tc < tb,

fulfills the following simple geometrical criterion:

yc < ya + (yb - ya)
tc - ta
tb - ta

(42)

This natural visibility criterion will therefore establish the connec-

tions between nodes in the resulting natural visibility graph (NVg).
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Figure 24: Visibility graphs map time series into complex networks follow-
ing a natural (a) or horizontal (b) visibility geometrical criterion.

One can likewise map a time series into a horizontal visibility

graph (HVG) where two points (ta,ya) and (tb,yb) are said to be

horizontally visible if :

ya,yb > yc 8c such that ta < tc < tb (43)

In short, two points in a given time series are said to "see" each other if

one can draw a line joining them without intercepting any intermedi-

ate data height. For natural visibility, the line can take any slope and

for horizontal visibility, the line joining two data points must have

zero slope. Figure 24 shows both the natural and horizontal visibil-

ity criteria at work on an arbitrary time series. Notice that horizontal

visibility is a more stringent criterion than natural visibility, meaning

that if two points are horizontally visible then they are also trivially

visible when using the natural visibility criterion. Consequently, the

horizontal visibility graph of a time series is always a sub-graph of

the natural visibility graph associated to the same time series.
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Figure 25: The visibility between points is invariant to several transforma-
tions including the vertical translation shown here.

From the definition of visibility it immediately follows that, for a

set visibility criterion, the visibility graph associated to a given time

series is unique. Moreover, any two subsequent data points of the

time series are always connected by an edge, thus visibility graphs

are connected and Hamiltonian [85]. In addition, visibility graphs are

invariant to re-scaling on both horizontal and vertical axes (i.e., the

first point on either side of a node i remains visible from i no mat-

ter how far apart they are), and invariant to vertical and horizontal

translations (i.e., only the relative values of point determine visibility

relations). Figure 25 illustrates a vertical translation of the data points

in a sample time series. One may observe how the visibility between

points remains the same after the transformation.

6.2 spectral visibility graphs

Inspired by the invariant properties of visibility graphs, we propose

to employ such a mapping for magnitude spectra, introducing visibil-

ity graphs to spectral analysis. We define the spectral visibility graph

(SVg) of a given magnitude spectrum z = g(f) of z 2 CF, where f

denotes frequency and F is the total number of frequency bins, fol-

lowing the construction of visibility graphs for time series. From now

onwards we will focus on the natural visibility (as it also contains the

horizontal visibility) and refer to it simply as visibility.
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Every frequency bin corresponds to a node, unlike previous audio

graph-based representations where nodes are associated to feature

vectors [89] or time frames (Section 5.2). Two nodes are connected

if the associated frequency bins (fa, za) and (fb, zb) see each other,

fulfilling the visibility criterion

zc < za + (zb - za)
fc - fa
fb - fa

(44)

where (fc, zc) is every intermediate frequency bin such that fa < fc <

fb.

Following the definitions in Section 5.1, we can further consider

the corresponding adjacency matrix A and find the degree vector ~

and degree distribution vector ~p, such that for every frequency bin

f = 1, 2, ..., F in the spectrum its degree corresponds to

f =
FX

j=1

A(f, j) (45)

Both the construction of the degree and degree distribution vector

can be visualised in Figure 26.

Similarly to the degree vector of the visibility graph of time series,

the SVg degree vector remains invariant under several transforma-

tions of the spectrum, including vertical and horizontal translation as

well as vertical and horizontal rescaling. In the case of audio signals,

a horizontal rescaling of the spectrum would correspond to a change

in pitch and a vertical translation to the presence of uniform broad-

band noise. Being resilient to such transformations is a major advan-

tage in the audio analysis of applications where the relation between

peaks (i.e. harmonic content) is the subject of interest. Therefore, we

propose the SVg degree vector ~ as an alternative representation for

magnitude spectra z, both represented in Figure 26.

Taking a step further, let Y 2 CF⇥T be the spectrogram of an au-

dio time signal y, and Y its magnitude, where F is the number of

frequency bins and T the number of time frames. Here, the proposed

representation K 2 NF⇥T will take a matrix form such that every

column t = 1, 2, ..., T will correspond to the degree vector ~t of the

visibility graph of frame t of Y (Figure 27). More precisely, taking

At 2 BF⇥F as the visibility graph’s adjacency matrix of the time



6.2 spectral visibility graphs 110

0 1 2 3 4 5 6 7 8 9 10

z

frequency

1

2

3

4

5

6

7

8

9

10

SVg

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6

7
8

9
10

Degree 

N
um

be
r

of
no

de
s
n


 - ocurrence

0 2 4 6 8
0
1/n(G)

2/n(G)

3/n(G)

4/n(G)

5/n(G)

6/n(G)

7/n(G)

8/n(G)

9/n(G)

1

~p

D
eg

re
e

di
st

ib
ru

tio
n
P
(
)

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6 ~

frequency

D
eg

re
e


Proposed representation

Figure 26: Proposed representation, the visibility graph degree vector, as an
alternative to magnitude spectra.

frame’s magnitude spectra t (i.e. column) of the spectrogram Y, we

define the degree matrix K associated to Y such that:

K(f, t) =
FX

j=1

At(f, j) (46)

where f = 1, 2, ..., F and t = 1, 2, ..., T . We propose to use K as an

alternative representation to the spectrogram Y .

Even though spectral peaks tend to take high values in the pro-

posed representation, their prominence will depend on their surround-

ings. In other words, peaks close to each other will have less height

than sparse ones, such as the harmonics of a musical note. Looking at

Figure 26, one may notice how the height at position 4 lost pertinence

in the degree domain, going from being the second maxima to being

equal to lesser heights (6,7 and 10); explained by its proximity to the

maximum peak in 5. On the other hand, the heights at position 2 and

8 (equally spaced from the maximum) surrounded by smaller heights,

gained relevance in the degree domain. Therefore, one can think the

transformation into the degree domain, and so into the proposed rep-
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Figure 27: The spectrogram (a) and the proposed representation (b) of 10 sec-
onds of track 51 of the dataset DSD100. Both representations are
normalised by their own maximum and compressed by a factor
of 0.6. The spectral visibility graph degree enhances the harmon-
ics components of the signal.

resentation, as a sort of compression enhancing sparse peaks (i.e. har-

monics) apparent in Figure 27.

As an audio analysis tool, the structure and properties of the pro-

posed mapping directly relate to harmonic content analysis, and so

we propose to examine the common case where both harmonic and

broadband events overlap. In such a scenario, the harmonic energy

in the spectrum will remain prominent up to a certain SNR, taking

the harmonic event as the signal of interest and the broadband as

noise. If the broadband event overpowers the harmonic content, it

will overcast the harmonic contribution in the magnitude spectrum,

complicating the analysis of its harmonic content.

As one can observe in previous chapters, a common task in audio

analysis is the search for similar harmonic content between spectra

(e.g. time frames in a spectrogram). In the presence of powerful ad-

ditive broadband noise, most distance metrics fail to recognise the

similarity of the harmonic content as they treat all spectral energy

as equivalent. Such a scenario relates to a vertical translation of the

magnitude spectrum and so the harmonic event spectrum with and

without additive broadband noise should present a comparable vis-

ibility graph and degree vector. Therefore, unlike in the magnitude

spectrum (e.g. Figure 27.a), the harmonic peaks in the proposed rep-
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resentation (e.g. Figure 27.b) will remain salient in presence of addi-

tive broadband events, and so, one can now use standard distance

metrics (e.g. l1 or l2 norm) to reliably measure harmonic similarity.

Hence we propose the SVg degree as a novel domain for robust har-

monic similarity measure in audio signals.

6.2.1 Empirical evaluation

To evaluate the proposed representation of audio signals for har-

monic similarity measure we performed two experiments, one with

synthesised data and a second one with real musical recordings. In

both experiments the task is to find the correct nearest neighbour of

a given harmonic event. We use three different representations of the

audio signals: the magnitude spectrum (i.e. z), the SVg degree (i.e. ~)

and the SVg degree distribution (i.e. ~p).

Our proposed representation is the SVg degree; however, we in-

cluded the degree distribution (cf. Figure 26) in the experiments as

it has an additional pitch invariance that could benefit the task (i.e.

the absolute location of peaks information is ignored). Since our goal

is to compare these representations, we employ simple distance met-

rics (i.e. Euclidean and cosine) to conclude on which representation

is more appropriate for harmonic similarity measurements. We use

the mean reciprocal rank (MRR) as the evaluation metric, as we know

before hand which is the one and only correct nearest neighbour, sim-

ilarly to other audio query tasks with an unique correct target such

as cover song retrieval [5, 33].

We can define the Euclidean distance dE of two vectors p = (p1,p2, ...,pN)

and q = (q1,q2, ...,qN) of the same size N as

dE =

vuut
NX

i=1

(qi - pi)2 (47)
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and the cosine distance dC between the same two vectors as nor-

malised metric following:

dC =

P
N

i=1
qipi

qP
N

i=1
q2

i

qP
N

i=1
p2

i

(48)

Therefore we expect the Euclidean distance to be more sensitive to

similarity in peak values and the cosine distance to be more sensitive

to the positioning of the peaks (i.e. the pattern).

For high frequency resolution spectra, the basic computation of vis-

ibility graphs 1 is not ideal (O(n2)). Therefore, here we used a sig-

nificantly faster alternative to compute visibility graphs based on a

"Divide & Conquer" approach (O(n logn)) [70] that will be further

discussed in Section 6.3. Python source code for our implementation

and experiments is freely available online. 2

In the first experiment we used part of the synthesised data from

the experiment in Section 4.4.1: 12 synthesised instruments with the

same midi file of 14 notes (A2 to G4) sampled at 44100Hz. Each in-

strument signal was divided into the distinct midi notes and then

individually transformed into the magnitude frequency domain with

a Fourier transform of size 16384, "clean" spectra. Only the first 2000

bins of the magnitude spectra were kept for the rest of the analysis.

Random normal noise was then added to the note signals at dif-

ferent SNR values and the result transformed to the frequency do-

main, "noisy" spectra. The pair-wise distances between all spectra,

both clean and noisy, were then computed and sorted in ascending

order. For every clean track, the rank of its noisy version was found

and used to compute the MRR. This procedure is repeated for the

spectral visibility graph degree representation as well as for the de-

gree distribution. We can define the MRR as the mean of the noisy

version’s rank across all Q clean spectra queries, such that:

MRR =
1

Q

QX

i=1

1

ranki
(49)

1 Original visibility graphs Fortran 90/95 implementation can be found at http://www.
maths.qmul.ac.uk/~lacasa/Software.html

2 Available at https://github.com/delialia/vgspectra

http://www.maths.qmul.ac.uk/~lacasa/Software.html
http://www.maths.qmul.ac.uk/~lacasa/Software.html
https://github.com/delialia/vgspectra
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Figure 28: The average mean-reciprocal-rank (MRR) amongst all notes of all
instruments in experiment 01: 12 synthesised instruments playing
14 notes, clean and with additive random noise. Pair-wise simi-
larity between all signals in the frequency magnitude, degree and
degree distribution domain. The clean notes act as query and the
expected closest neighbour is their noisy version.

The average MRR across all notes of all instruments for different

SNR is plotted in Figure 28. As expected the proposed method (or-

ange solid line) achieves best results when the SNR is low. Moreover,

since the location of the peaks are better preserved in the proposed

representation, it always achieves best results whilst using the cosine

distance metric. However we see a small dip in performance relative

to the raw spectrum, using the Euclidean distance in the higher SNR

cases. This can be explained by the bigger difference in value between

the degree peaks of the clean and noisy signals than in the spectrum

case. Even though the peaks remain prominent in the noisy case, the

number of nodes the "peak node" sees is reduced compared to the

clean peak degree as there are new data heights induced by the noise.

In the case of high SNR, the noise does not overpower the harmonic

content and so it does not introduce too much of a difference in the

Euclidean distance.

In the second experiment we use the publicly available Demixing

Secrets Dataset (DSD100), containing the stems and mixtures of 100

songs sampled at 44100 Hz [83]. In this case the query will be clean

vocal frames (i.e. lead harmonic source) and the goal is to find their

corresponding frames in the mixture. The magnitude spectrogram for

both the vocal and mixture tracks is calculated, with a window size
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Figure 29: Mean-reciprocal-rank (MRR) of all mixtures in experiment 02:
dataset Dev DSD100, vocal stems and their correspondent mix-
tures. Pair-wise similarity between the clean vocals and the mix-
ture signals in the magnitude, degree and degree distribution do-
main for each track. The clean vocal time frames act as query and
the expected closest neighbour is that time frame in the mixture.

of 2046 samples with 50% overlap, and only the first 500 frequency

bins will be considered in the following (i.e. low-pass filter cut-off at

around 10kHz). Based on the spectrogram energy of the vocal stem,

we select the frames with vocal activity and use them as query frames.

The pair-wise distance between the clean vocal query frames and all

the frames in the mixture spectogram is then calculated and sorted.

The rank of the corresponding mixture frame containing the clean

vocal query is then processed and stored to calculate the MRR. This

procedure is repeated for the spectral visibility graph degree repre-

sentation as well as for the degree distribution.

Figure 29 shows the results for experiment 02. The proposed rep-

resentation is, in both cases (Euclidean and cosine distance), visibly

much more suitable than the magnitude spectrogram and the degree

distribution for the given task.

The fact that the degree distribution representation always achieved

the worst results shows that the location of the harmonic peaks is a

crucial piece of information for this type of harmonic similarity task.

Even though the degree distribution was not advantageous in this

case, there may be other audio analysis tasks for which it is useful,
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such as those requiring pitch shift-invariance, like in Section 4.3 or

[116].

Overall we can conclude that the proposed spectral visibility de-

gree representation has properties valuable in audio analysis. In par-

ticular, the translation invariance of the proposed representation di-

rectly relates to a harmonic event in presence of broadband noise

and we have here demonstrated its use for robust similarity mea-

sures of both synthetic and real harmonic sounds. Even though we

have demonstrated one application of the proposed representation,

we expect such a graph-based approach for audio analysis to find

other useful applications in the future.

6.3 how to compute visibility graphs?

The straightforward computation of visibility graphs presents a worst

case time complexity quadratic in the length of the series. Even though

such complexity should not be an issue for medium-sized series (104-

105 points), it remains inefficient for longer time series. Therefore,

faster algorithms have been proposed employing a "Divide & Con-

quer" (DC) approach, reducing the average-case time complexity to

O(n logn) [70].

Both of these approaches comprising the current existing methods

to compute visibility graphs, are off-line algorithms as they require

all the data points in the time series to be available before the graph

is constructed. Consequently, the integration of new data points nor-

mally requires to re-compute the visibility graph from scratch, repre-

senting a major shortcoming limiting the real-world applications of

visibility graphs.

Here we introduce, to the best of our knowledge, the first on-line

algorithm to compute visibility graphs efficiently. The proposed algo-

rithm employs an ‘encoder/decoder’ approach by means of a binary

search tree representation of the time series (or any ordered sequence

of data points). In particular, the time series is encoded into a binary

search tree that can be updated every time a new chunk of time series
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is available by merging its corresponding binary search trees. The re-

sulting binary search tree can be decoded into a visibility graph when

required. This introduced flexibility comes at no significant computa-

tional cost as the presented method shares the computational com-

plexity of the current fastest visibility algorithm (DC).

6.3.1 State of the art

A straightforward approach to compute visibility graphs consists in

checking whether any of the points of the time series is visible or not

from every other point. This corresponds to evaluating the visibility

criteria for every pair of points in the time series. Since we consider

visibility as a symmetric relation, the total number of checks needed

to obtain a visibility graph of a time series of n data points is equal

to n(n- 1)/2, corresponding to a O(n2) time complexity.

In the case of horizontal visibility, one can take a step further and

safely assume that no point after a value larger than the current value

ta will be horizontally visible from ta. This observation effectively re-

duces the time complexity of the construction to O(n log(n)) and, in

the case of noisy (stochastic or chaotic) signals, it can be proved that

this algorithm has an average-case time complexity O(n) [85]. Never-

theless, all pairs of points need to be checked in the case of natural

visibility. From now on, this simple approach will be referred to as the

basic method for both natural and horizontal visibility computation 3.

As an improved alternative for visibility computation, Lan et al.

presented a "Divide & Conquer" approach [70]. This algorithm re-

duces the average case time complexity of the construction of the

natural visibility graph to O(n log(n)) and it significantly reduces

computation time for most balanced time series.

The basic idea behind the "Divide & Conquer" algorithm is related

to the horizontal visibility optimisation mentioned above. Once the

maximum value M of the time series is known, one can safely assume

3 The original Fortran 90 implementations of basic algorithms to construct visibility
graphs can be found at http://www.maths.qmul.ac.uk/~lacasa/Software.html

http://www.maths.qmul.ac.uk/~lacasa/Software.html
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that the points on the right of M will not be naturally visible from

the points on the left of M (the point M is effectively acting as a wall

between the two sides of the time series). The same argument is then

applied recursively on the two halves of the time series separated

by M, where the local maxima subsequently found at each level are

connected with an edge to the maxima at the level immediately above

them. From now on, this improved method will be referred to as

"Divide & Conquer" (or DC for short).

Both the basic method and DC are off-line approaches, meaning

that they require all the points of the time series to be accessible at

the beginning of the computation. This rigid requirement limits the

applicability of visibility graphs, especially in fields like telecommu-

nications or finance, where there is a constant incoming flow of new

data to be processed and assimilated. Moreover, in such big data sce-

narios, one tends to favour an initial overall high level analysis that

will reveal the need for further processing. This work-flow would

benefit from dynamic algorithms unlike the ones presented above.

6.3.2 Binary Search Tree Codec

Here we propose a new method to compute visibility graphs on-line

based on an encoding/decoding approach. In our method, the nec-

essary visibility information is first encoded into an appropriately

constructed binary search tree, and then successively decoded into a

visibility graph when needed.

We can define a tree as a connected acyclic graph, where an acyclic

graph, also known as forest, is simply a graph with no cycle. We say

the tree is rooted when there is a node chosen as a root. The parent of a

node is its neighbour on the unique path to the root, and its children

are its other neighbours. Now we can define a binary tree as a rooted

tree where each node has at most two children, designated as left or

right child.
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6.3.2.1 Encoding - Maximum Binary Search Tree

The construction of a maximum binary tree is fairly straightforward

and its corresponding pseudo-code is shown in Algorithm 1. The first

step is to sort the given time series in descending order of values,

while storing the original position of each value in the time series.

From now on, we will refer to the original positions as indices (i.e. t)

and to the values of the times series simply as values (i.e. g(t)). In the

case of repeated values in the sequence, the first encountered index

will come first while sorting.

1 Node {

index : float # x, input, argument

value : float # f(x), output

left : Node # left child subtree

right : Node # right child subtree

6 }

def buildTree(values : {float}, indexes: {float}):

root  Node()
11

sorted_values = sort_descending(values)
sorted_indexes= indexes[getIndex(sorted_values)]

for (i, v) in (sorted_indexes, sorted_values):

16 root.add(Node(index = i, value = v))

return root

21 def add(self : {Node}, node : {Node}):

if self is empty :

self.index = node.index
self.value = node.value

26 else:
if node.index < self.index:

self.left.add(node)
else:

self.right.add(node)

Algorithm 1: Pseudocode of the algorithm used to build a maximum binary
search tree

Once we have a list of values sorted in descending order, together

with the corresponding indices, we follow the standard procedure to

build a binary search tree based on the indices. Every entry in the

index list will be a node and each node has a left and right child, as

shown in the data structure proposed in Algorithm 1 (i.e., Node). The

first node of the binary tree (the one with no parent) is called root.
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In our case, the root will be the index of the datum corresponding to

the maximum value in the time series, which is also the first entry in

the index list.

The next index, corresponding to the point with the largest value

smaller than the maximum, will then be added to the tree. If its index

is smaller than the root, it will become the left child of root, while if

its index is larger than the root it will become the right child of root

(see function add in Algorithm 1). The next index to add will start off

being compared to the root; if it’s smaller, it will travel to the left of

the tree and, if it’s bigger, to the right. It will continue descending

the tree in this manner until it finds an empty spot. We continue

adding the indices in the list accordingly (see function build_tree in

Algorithm 1) until there are no more data points (i.e. indices) to add.

In the case of the sample time series in Figure 30.a, the maximum

is in position 5 and will therefore be the root of the binary tree. The

point whose value is immediately smaller than the maximum is in

position 4 (less than 5), so it will become the left child of the root. The

third point in the list is in position 2, and will travel down the tree

on the left-most branch (as it is smaller than both 5 and 4). The right

branch of the tree is populated by the fourth point (in position 8),

whose index is bigger than the root. In Figure 30.A one may appre-

ciate the correlation between the time series and its associated binary

tree structure. The visibility information captured by such a tree may

also now be more apparent.

The time complexity of the procedure needed to encode the time

series into the maximum binary search tree is O(S+ T) where O(S)

is the time complexity of sorting the series and O(T) is the time com-

plexity of the algorithm to construct the binary search tree. Sorting by

comparisons is known to be O(n logn) (e.g., by using either Merge-

Sort of QuickSort), while constructing a binary search tree costs on

average O(n logn). Hence the overall average-case time complexity

of the encoding step is O(n logn).
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Figure 30: Representation of the different steps of the proposed algorithm
for visibility graphs computation. In section A, the sample time
series and its correspondent maximum binary search tree. Sec-
tion B represents the connections deduced by the first connectiv-
ity rule. The second and third connectivity rules are illustrated
in section C and D respectively. Section E shows the remaining
checks needed to ascertain natural visibility. Finally, section F re-
ports the horizontal and natural visibility graph associated to the
original time series.
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6.3.2.2 Decoding - Connectivity Rules

The structure of the maximum binary search tree encodes sufficient

information about the time series to allow to efficiently construct the

corresponding horizontal visibility graph. The decoding procedure is

based on the following connectivity rules, also illustrated in Figure 30

:

1. All the nodes connected by an edge in the maximum binary

search tree are visible to each other and therefore connected in

the visibility graph (Figure 30.B);

2. Each node of the maximum binary search tree sees all the nodes

in the left-most branch of the sub-tree rooted at its right child,

as well as all the nodes in the right-most branch of the sub-tree

rooted at its left child (Figure 30.C);

3. The nodes of the left sub-tree of a node i are not visible from

the nodes of the right sub-tree of node i (Figure 30.D)

Note that, if there are no adjacent repeating amplitudes, the hori-

zontal visibility graph is fully determined by these connectivity rules.

In particular, when checking the connectivity rules, we simply skip a

node if it has the same value as the current node. One can think of

adjacent points with equal value as an interconnected ‘super node’,

which takes the smallest index value when ‘looked’ from the left and

the biggest index value when ‘looked’ from the right or from above.

Since the horizontal visibility decoding will always be fully deter-

mined by the three connectivity rules above, its time complexity is

the sum of the time complexity of the rules. Essentially, each rule can

be reduced to a series of look-ups in a binary search tree, and each

look-up operation has time complexity O(log(n)) in a balanced tree.

These connectivity rules are applied to every node in the tree, and so

the overall time complexity of decoding a horizontal visibility graph

is O(n log(n)). This represents a major improvement over the state-

of-the-art algorithms, which can ramp up to O(n2) in the worst case

scenario.
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The construction of the natural visibility graph, instead, requires

the creation of some connections that are not captured by the three

connectivity rules above. Hence, in this case we need to perform addi-

tional visibility checks (Figure 30.E). In particular, for each node i we

must check the natural visibility criterion with each node in the sub-

tree rooted at the right child of i and with each node in the sub-tree

rooted at the left child of i. These additional checks do not modify

the average-case time complexity (which remains O(n logn), but the

worst-case scenario still depends on the actual structure of the time

series, and yields a time worst-case time complexity O(n2) which is

realised by monotonically increasing or decreasing time series.

6.3.3 Time Complexity

In order to determine the time complexity of the proposed method,

we will follow the standard procedure by considering the worst-case

and average-case scenarios. In both scenarios, the time complexity

of the encoding stage is determined by the time complexity of the

sorting algorithm used, which in general is O(n log(n)), and of the

construction of the binary search tree, which is O(n logn). So in both

cases encoding into a binary search tree costs O(n logn).

As discussed in the previous Section 6.3.2.2, decoding into a hor-

izontal visibility graph is made through the three rules explained

in Figure 30B-D, which require only a visit of the binary search tree

(with time complexity O(log(n))). Hence, the overall time complexity

of encoding and decoding into a horizontal visibility graph remains

O(n log(n)).

The worst case for decoding into a natural visibility graph is that

of monotonically increasing, monotonically decreasing, or constant

series, whose corresponding binary search trees degenerate into a

line. In this case, the second and third connectivity rules are trivial,

leaving only the first rule and the additional natural visibility checks.

More precisely, if the tree is a line we need to check the natural visibil-

ity among (n- 1)(n- 2)/2 pairs of nodes, while the visibility of the

remaining (n- 1) pairs of nodes is determined by the first connectiv-
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Figure 31: Representation of a perfectly balanced tree of height 4. The nodes
in green are visible to the root and this visibility can be deduced
by the proposed decoder (i.e. the connectivity rules). The number
of nodes at each height in a balanced tree can always be expressed
in base 2.

ity rule. Even though this requires (n- 1) checks less than the basic

implementation (which requires n(n- 1)/2), the time complexity will

still be O(n2) for the worst case scenario.

For the average case we assume the maximum binary search tree

to be balanced. This means that the connectivity rules of the decoder

will significantly reduce the overall number of visibility checks. If we

consider a perfectly balanced binary tree as shown in Figure 31, the

inner left branch of the right sub-tree and the inner right branch of

the left sub-tree of a node are visible to the parent node. These are

represented in green in Figure 31 where the root is the parent node.

This means that the visibility between the root and all the rest of

nodes (the ones in blue) is unknown and needs to be checked.

Therefore we can deduce that the number of remaining visibility

checks for the root in a balanced tree of height htmax is equal to

2htroot+1 - 1- 2hroot , where 2htroot+1 - 1 is the total number of nodes

below the root while 2htroot is the number of nodes whose visibil-

ity can be deduced by the three decoding rules (green nodes). No-

tice that the height of the root htroot corresponds to the maximum

height of the balanced tree htmax. The same reasoning applies to all

the other nodes. More precisely, for a node at height ht, there will be

(2ht+1 - 1- 2ht) remaining visibility checks to be performed.
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In order to calculate the total number of remaining visibility checks,

one needs to multiply the individual expression above by the number

of nodes at that height 2htmax-ht and sum across all heights where

the checks are needed (all except the last two). Therefore, one can

express the total number of remaining natural visibility checks in a

perfectly balanced binary tree as follows:
hmaxX

ht=2

2htmax-h
⇥
2ht+1 - (2ht+ 1)

⇤
=

2htmax
⇥
2(htmax - 1)-

hmaxX

ht=2

ht21-ht -
htmaxX

ht=2

2-ht
⇤

(50)

Since the maximum height of a balanced tree with n nodes is

htmax = log
2
(n), the total number of operation is dominated by the

first term of the expression above,

2htmax2(htmax - 1) = 2n(log
2
(n)- 1) (51)

while the remaining terms will only introduce logarithmic corrections.

In conclusion, the time complexity of the decoding for natural visibil-

ity graphs is on average O(n log(n)).

The proposed method has the same average-case time complexity

than the DC algorithm, thus improving on the original basic algo-

rithm for both horizontal and natural visibility graphs. In the Ex-

periment section below we will see that in practice our algorithm

out-competes the basic algorithm and performs as well as the DC

approach, with the additional property of allowing for on-line assim-

ilation of new data points.

6.3.4 On-line visibility graphs: merging binary trees

Every time a node is added to an existing binary search tree, it essen-

tially travels down the tree, going left if smaller and right if larger,

until it finds an empty space (see pseudocode function add in Algo-

rithm 1). Therefore when a node is added to an existing binary tree

there is no need to recalculate the tree structure from scratch. Due to

the fact that the proposed encoder is a binary search tree, there is a

possibility to efficiently update it on-line.
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Given a time series and its corresponding binary search tree, we

would like to integrate new data points in the tree structure with-

out recomputing it from scratch. One could process the points of the

newly available batch of data individually and include them in the ex-

isting tree structure by comparing both values and indices. However,

other than being a time consuming approach for large numbers of

points, processing points individually fails to include useful informa-

tion of both the batch and the current tree structure. For example,let’s

consider that all the nodes in the batch to be added have larger indices

than the nodes in the current tree structure, and so larger indices than

the current root. This means, all the nodes in the batch will populate

the right side of the resulting tree. If the nodes are inserted individ-

ually, this information will be overlooked producing an inefficient

algorithm.

Therefore, we propose to take a different approach by treating the

new batch of points as an entity. More precisely, we propose to com-

pute the binary search tree of the new nodes and merge it with the

previous tree structure.In this way, if all the new nodes indices are

larger than the current root, one can include such information and

produce an optimised algorithm, where potentially only one compar-

ison is needed to merge the current with the batch tree. This is the

case for real-time incoming data, as the batch’s nodes always have

larger time values (indices) than the previous points in the time se-

ries.

Furthermore, the proposed merge approach covers both append

and insert operations. In terms of time series representation, this

means one could update the binary tree codec with observations that

happened later in time or with a higher time resolution. This novel

introduced flexibility for visibility computation, opens the door to

new applications such as big data or audio applications where the

sampling rate may vary at different analysis stages.

In order to merge two trees, we propose to compare them by levels,

increasing depth at every recursion of the merge function outlined in

Algorithm 2. The comparison happens in two steps: firstly the node

values at a level are compared to determine which node will occupy

that location in the resulting tree; secondly, the node indices are com-
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pared to determine which direction the rest of the nodes will travel

down in depth.

Following the construction of the proposed binary search tree, the

node with larger value will be chosen and the rest of the nodes will

travel left if their indices are smaller than the chosen one and right

otherwise. The nodes to be compared are the children of the chosen

node with the nodes from the previous level that were not chosen;

starting of by comparing the two roots of the trees to be merged.

def merge(input:{Node}):

if input is empty: return null

5 r  min_index(maxima_value(input))
pool  input \ {r}

pool.append(r.left, r.right)

10 for n in input \ {r} :

for c in [n.left, n.right] :

if sign(n.index - r.index)
15 6= sign(c.index - r.index):

pool.append(c)
n.remove(c)

20 return Node(
index = r.index,
value = r.value,
left =

merge({p | p 2 pool, p.index < r.index }),

25 right =

merge({p | p 2 pool, p.index > r.index }))

Algorithm 2: Pseudocode of the proposed algorithm to merge two binary
trees defined by their root (class Node). The input is a list of
roots to be merged.

Usually, the children of the nodes that travel down in depth are

not included in the level comparison. However, when new data is

to be inserted to the existing series, the child of the node traveling

down could have an index corresponding to the other branch of the

resulting tree. In this case, the connection between the node and that

child will be broken thereafter.
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6.3.5 Numerical Experiments

Here we show how the proposed visibility algorithm compares to the

state of the art. All the related code necessary to run the following

experiments is implemented in Python 2.7 and freely available online
4. The machine used in the simulations is an early 2015 MacBook Pro

Retina with a 2.9GHz Intel Core i5 processor and 16GB of RAM.

To put the presented algorithm into context [70], in Figure 32 we re-

port the computation time needed by current visibility algorithms on

different synthetic time series of increasing length. Since the actual

efficiency of each algorithm depends to some extent on the charac-

ter of the original time series, we considered uniform random noise

(which has no structure and on average produces almost-balanced

binary search trees), a Conway series (which has a quite rich struc-

ture and corresponds to a quite unbalanced tree), and a random walk

series (which represents the more realistic scenario of a signal with

both structure and noise).

Similarly to [70], we define a recursively generated Conway series

of size n as a(t)-
t

2
, where

a(t) = a(a(t- 1)) + a(t- a(t- 1)) 8t 2 [2,n] (52)

and a(1) = a(2) = 1. The random walk time series w(t) is generated

by sampling ↵ from an uniform distribution in the range [0, 1), such

that

w(t) = w(t- 1) + ✏, for ✏ =

8
<

:
-1 if ↵ < 0.5

1 if ↵ > 0.5
(53)

The code to generate both of these series is available online 4.

In the first case of random series (first column in Figure 32) we

observe the largest gap in computation time between the basic algo-

rithm and the more efficient ones as it corresponds to the aforemen-

tioned average case where both algorithms (DC and the proposed

one) significantly reduce the number of operations. Such differences

are more prominent in the computation of the horizontal visibility

graph (third row in Figure 32).

4 Available at https://github.com/delialia/bst

https://github.com/delialia/bst
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Figure 32: Computation time of the natural and horizontal visibility graph
(nvg, second row; hvg, third row) of different time series (exam-
ples on first row) using the current visibility algorithms: Basic,
Divide & Conquer (DC), and the proposed binary search tree
(BST) method. Each point at every series size is the mean of the
computation time for 10 series of that size.

The proposed method (BST) shows a similar trend to the state-of-

the-art natural visibility computation method (DC) in Figure 32, al-

though it appears to be overall slower. However, the proposed method

clearly outperforms the state-of-the-art in horizontal visibility com-

putation (third row). This comes at no surprise, as mentioned in Sec-

tion 6.3.3, unlike natural visibility, the horizontal visibility is fully

defined by the three aforementioned connectivity rules, and so more

efficient than current methods (basic and DC).

Additionally, in Figure 33 we present a similar computational time

analysis over real samples of speech (English language) [50] and fi-

nancial data [93]. We sample 100 times series (first 1000 points) from

the TIMIT acoustic-phonetic continuous speech corpus (630 Ameri-

can English speakers reading ten phonetically rich sentences recorded

at 16kHz) [50], as well as 100 time series from the daily prices of US

stocks traded in 2013 used in [93].

Figure 33 is particularly interesting as it clearly shows a correlation

between time computation and the time series structure (please note
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Figure 33: Current and proposed visibility algorithms computation time for
100 speech and finance time series of 1000 points. The speech
time series are sampled from the training TIMIT dataset [50]. The
finance time series corresponds to the 2013 quarterly data used
in [93].

the different scale for time computation). Even though the time com-

putation may differ, the DC and proposed method distribution vary

very little between data types in comparison to the relatively high

spread observed for the basic algorithm.

The horizontal visibility computation remains stable in both the DC

and proposed method, and could potentially be considered indepen-

dent of the data type given a time computation scaling factor. This

behaviour was equally expected as the proposed method is fully de-

fined by the aforementioned connectivity rules and has average-case

time complexity O(n logn).

On the other hand, Figure 33 suggests that the efficiency of the com-

putation of natural visibility graphs is subject to wider fluctuations.

The position of the maximum in the time series affects the efficiency

of both the DC and the proposed method, as it will determine the
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number of additional visibility checks needed to obtain the natural

visibility graph.

The English speech time series considered here will typically have

its maximum somewhere towards the middle section of the signal

(since we rarely tend to raise our voice at the end of our speech).

Therefore the proposed method will most probably produce an al-

most balanced binary search tree for the speech time series, yielding

a time complexity of O(n logn). For this reason, we observe a wider

gap in computation time between the basic method and the faster al-

ternatives for the speech data in Figure 33 than for the financial time

series.

In terms of computation time, the proposed method and the DC

one are closely related. They are both quicker than the basic imple-

mentation in both natural and horizontal visibility and they both

present similar trends for increasing time series size (Figure 32). How-

ever, the proposed algorithm has proven to consistently be the quick-

est option for horizontal visibility graph computation. On the other

hand, the DC algorithm in general does perform better than the pro-

posed method for natural visibility computation. Even though at this

point both DC and the proposed method seem equally good of an

option for fast visibility computation, the presented algorithm has

the additional property of allowing on-line assimilation of new data,

which is something not easily achievable in either the basic approach

or the DC algorithm.

The most straightforward way to assess the on-line functionality of

the proposed method is to compare it with the equivalent off-line ap-

proach. In our case, it directly relates to the binary tree codec. Given

a batch of new points to be added to the time series visibility analysis,

in the off-line approach, the new batch is simply added to the time

series itself and then the binary tree codec must be re-computed from

scratch. In the proposed on-line approach, the next batch is encoded

into its own binary tree that is then merged to the existing codec us-

ing the procedure detailed in Algorithm 2. Note that the decoding

step remains the same for the on-line and off-line approach, and so

the comparison will essentially be between computing a codec from
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Figure 34: Given a random time series (size L) and a batch of new random
points (size N) to be added to it, this plot shows the advantage,
in terms of computation time, of the proposed on-line approach
versus the off-line alternative. The proposed method computation
time is the time it takes to build the maxima tree of the new points
and merge it with the existing time series tree (i.e. ton-line). The
off-line alternative computation time is the time it takes to build
a new maxima binary tree from scratch including the new points
to the time series (i.e. toff-line). The time ratio is the log scale
of toff-line/ton-line, how much quicker the proposed method
is. The size ratio is L/N, how much bigger the time series is com-
pared to the batch to be added. Both append and insert scenarios
are represented here, 10 random cases of each were computed.
The point in the graph is the mean of these 20 cases and its un-
certainty is captured by the error bars.
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scratch (off-line) and merging two codecs into a single binary search

tree (on-line).

Figure 34 shows how much quicker the computation of the on-line

method (codec for new data + merging) is in comparison to the com-

putation time of the off-line approach (codec from scratch), for differ-

ent time series and batch sizes. In particular, the on-line approach is

always better if the new batch to be added is equal or bigger than the

existing time series, especially for large time series.

Overall, the proposed visibility algorithm represents a substantial

improvement over the state-of-the art for horizontal visibility compu-

tation, and is on par with the most efficient natural visibility algo-

rithm (i.e. DC) available. Moreover, the procedure to assimilate new

data by means of merging the corresponding binary search tree en-

coding into the existing tree allows for efficient on-line computation

of visibility graphs, and represents a substantial speed-up with re-

spect to the existing off-line algorithms. This novel on-line capability

broadens the applications for visibility graphs at no additional com-

putational cost.

6.4 summary

Graph theory is emerging as a new source of tools for time series anal-

ysis and in this chapter we investigate its potential for audio related

tasks. One promising method is to transform a signal into its visibil-

ity graph, a representation which captures many interesting aspects

of the signal, as defined in Section 6.1.

In Section 6.2 we introduce the visibility graph for audio spectra

and propose a novel representation for audio analysis: the spectral

visibility graph degree. Such a representation inherently captures the

harmonic content of the signal whilst being resilient to broadband

noise. We present experiments in Section 6.2.1 demonstrating its util-

ity to measure robust similarity between harmonic signals in real and

synthesised audio data. The source code is available online 5.

5 Available at https://github.com/delialia/vgspectra

https://github.com/delialia/vgspectra
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However, the straightforward computation of visibility graphs is

time-consuming and rigid, motivating the development of more effi-

cient algorithms. In Section 6.3 we present a highly efficient method

to compute visibility graphs with the further benefit of flexibility: on-

line computation.

We propose an encoder/decoder approach, with an on-line ad-

justable binary search tree codec for time series as well as its cor-

responding decoder for visibility graphs. The proposed method for

computation of visibility graphs offers an on-line computation solu-

tion at no additional computation time cost, and would allow to em-

ploy visibility graphs in the analysis of large-scale time series and for

the on-line assimilation of new data. The source code is also available

online 6.

In the next chapter we will briefly outline possible steps to continue

the research line presented in this thesis, under the name of future

work.

6 Available at https://github.com/delialia/bst

https://github.com/delialia/bst


Part IV

TA K E H O M E M E S S A G E

Future research avenues are discussed, followed by a con-

clusion on the main message of this dissertation.



7
F U T U R E W O R K

The work we have just discussed brings a new perspective, introduc-

ing graph theory to well established audio tasks. Therefore, multiple

research avenues present themselves, exploring the applicability and

flexibility of the proposed graph-based methodologies. For instance,

one could wonder if we could learn source-specific graphs, or if the

binary tree encoder proposed in Section 6.3 already holds a struc-

ture useful for audio tasks without needing to decode into a visibility

graph.

However, one of the most natural steps as a continuation of this the-

sis would be to investigate the use of the proposed spectral visibility

graph representation presented in Section 6.2 within the KAM frame-

work. Would its vertical translation invariance be useful to define a

broadband interference resilient kernel?

7.1 spectral visibility graphs for kam ?

As explained in the first part of this thesis, the basic idea behind

KAM is that one can reconstruct the magnitude for a given source

by analysing the values at the locations where the source is likely to

assume similar values, ultimately relying on the assumed repetition

of sound events in musical signals. The success of the separation will

depend on the ability to identify similar sound events to the source

of interest in the presence of overlaying sources. The source similar-

ity is determined by a source-specific kernel function, which often

corresponds to a k nearest neighbours (kNN) search based on the

Euclidean distance. Such a simple kernel however implicitly assumes

the source of interest to be dominant in the magnitude domain, which

might not be the case in a low signal-to-noise ratio (SNR) scenario.

136
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This means that basic KAM can fail to have desired results in the

most difficult cases, and could even make audio interference more

perceptible.

The work presented in Section 4.4 offers a remedy to this limitation

of KAM, where a semi-supervised non-negative matrix factorisation

(NMF) approach learns models for the signal and the noise, which

are then used to achieve an adaptive interference resilient kernel for

the similarity search in KAM. This improves the overall separation

quality but at a significant computational cost: it introduces new pa-

rameters to be optimised/selected (refer back to Table 7), as well as

introducing the need for training data and a prior dictionary learn-

ing stage. How could we secure KAM’s simplicity whilst ensuring a

successful separation in low SNR scenarios?

In Section 6.2 we presented spectra visibility graphs as a novel al-

ternative representation to magnitude spectrograms. Such a represen-

tation retains the harmonic peaks salience in presence of broadband

events and has proven its adequacy for harmonic similarity measure-

ments. The burst-like interferences in our application are all charac-

terised by their powerful broadband nature, unlike the musical signal

mainly characterised by its harmonic contribution. Hence, one can ex-

pect the spectra visibility graph to preserve the harmonic peaks of the

musical signal in presence of interference. In this context, one could

safely assume the source of interest to be dominant and define a suc-

cessful kernel function. Therefore we propose to explore the potential

of such spectra visibility graphs as an alternative representation to ob-

tain an interference resilient kernel within the KAM framework in an

interference reduction task.

If we were to develop the proposed method as an extension to

the subset of the KAM framework presented in this thesis (in detail

in Chapter 3), we could differentiate the search from the estimation

space by introducing the novel spectra visibility graph as a represen-

tation for the k-NN kernel function.

Given a magnitude spectrogram X 2 RF⇥T of a input mixture x(t),

we set K 2 RF⇥T to be the degree matrix of the spectra visibility graph

corresponding to X as defined in Section 6.2. Now we can define a
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k-NN kernel function based on the Euclidean distance between the

degree vectors of the time frames visibility graphs (i.e. columns of K).

Let K be the set of all degree vectors ~t of length F such that |K| = T .

The k-NN kernel function will specify for every degree vector ~t a set

of k neighbours I(f, t) 2 Kk containing a similar degree value of the

music source of interest. Such that (f, t̃) is in I(f, t) if ~kt̃ is among the

k most similar degree vectors.

The degree vectors directly correspond to the time vectors of the

magnitude spectrum X, and so even though the kernel is defined in a

different domain, the localisation of the nearest neighbours remains

the same. Therefore we can express the estimation problem in the

same way as in KAM, using X in the same model cost function de-

fined Chapter 3 with the median operator as solution.

Since the proposed graph-based representation is one of the first of

its kind, the separation performance comparison with standard meth-

ods working in the magnitude domain is not straightforward. As, in

addition to choosing an adequate separation task for the evaluation,

one could also explore the capability of the proposed representation

to perform source detection. Similarly to the proposed method in

Section 4.4, where the semi-informed NMF estimate serves as an in-

terference detector, one can imagine the absolute values in K to also

be sensitive to broadband presence, and therefore potentially serving

as an indication of certain sources activity. Hence, the analysis and

empirical evaluation of such a method remains to be seen.



8
C O N C L U S I O N

This thesis is divided into four parts: Part i introducing the disserta-

tion, Part ii interested in source separation methods based in median

filtering, Part iii proposing a different perspective through graph the-

ory and concluding in Part iv.

After framing the dissertation in Chapter 1, the basic concepts of

blind source separation were introduced in Chapter 2, along with a

brief review on the relevant literature.

Most of the discussion in this thesis revolved around the family

of source separation methods based on median filtering, known as

the Kernel Additive Modelling (KAM) framework,which was fully

defined in Chapter 3. The basic idea behind KAM relies on the repeti-

tion of music signals to reconstruct the magnitude spectrogram of the

target source by analysing the values at the locations where is likely

to assume similar values.

In Chapter 4 we showed how the success of the separation depends

on the ability of the proximity kernel to identify similar sound events

to the source of interest in the presence of overlaying sources. We

further discussed the flexibility and limitations of a particular pop-

ular kernel, the frame-wise k-NN, implicitly assuming repetition in

both time and frequency, and expecting the target source to be en-

ergetically dominant. We proposed to introduce a temporal context

in the kernel Section 4.2 to temporally stabilise the target source esti-

mate. Then, we presented a shift-invariant kernel in Section 4.3 that

expands the pool of potential neighbours by introducing a degree of

freedom in the frequency direction in the baseline kernel function.

We also presented an acceleration technique in the specmurt domain,

Section 4.3.1, to speed up the search of similarity in the signal, sepa-

rating for the first time the search from the processing space.
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In Section 4.4 we challenged the use of KAM under low SNR con-

ditions where the target source is not always the most prominent. In

this case, we proposed to use a semi-informed NMF to yield an ini-

tial target source estimate fulfilling KAM’s assumptions, combining

for the first time a machine learning approach with KAM framework

and showing their complementary nature.

At the end of Chapter 4 we started the discussion about the sole

parameter of KAM framework, which is the number of nearest neigh-

bours k. Until now, there was little to no discussion on how to set k

which is expected to play a key role in the separation performance.

In Chapter 5 we proposed a method to automatically optimise such a

parameter, introducing graph theory concepts to the framework. We

also analysed its impact in Section 5.3 and questioned the adaptabil-

ity of KAM as well as the appropriateness of the standard evaluation

metrics.

We pursued the use of graph theory in an audio context in Chap-

ter 6 by introducing a powerful time series analysis tool, visibility

graphs, to spectra. We derived a new representation for audio, spec-

tral visibility graphs, as an alternative to the magnitude spectrogram

commonly used in audio related tasks. The new representation is

invariant to a number of transformations and enhances harmonics

peaks. We showed its use for similarity measure of harmonic signals

in presence of broadband noise.

Finally we discussed in Section 6.3 the current methods to compute

visibility graphs and we proposed the first algorithm capable of com-

puting a visibility graph on-line while remaining as efficient as the

state-of-the-art. This contribution transcends the audio community,

broadening the use of visibility graphs as a time series analysis tool

to large-scale and on-line applications.

In short, the main contributions of this dissertation can be sum-

marised as follows:

• Introduction of a temporal context in the proximity kernel

• Proposed shift-invariant kernel



conclusion 141

• Integration of machine learning in KAM framework

• Integration of graph theory tools in KAM framework

• First method to automatically optimise the sole parameter in

KAM

• Introduction of visibility graphs to spectra

• Novel graph-based representation for audio

• First on-line algorithm to compute visibility graphs

and the main teachings that may be useful for future research can

be summarised as:

• Including a temporal context in the proximity kernel temporally

stabilises the estimates

• Differentiating the search from the estimation space opens new

avenues to improve KAM framework

• A shift-invariant kernel boosts separation results

• Machine learning can be used for low SNR scenarios in detec-

tion and creation of an initial model

• NMF and KAM compliment each other

• Graph theory tools offer a new modelling perspective in KAM

• The hubness of the k-NN graph is a good indicator to pick k

• Spectral visibility graphs enhance harmonic content in signals

• Visibility graphs invariance to vertical translation is useful for

harmonic similarity

• Encoding a visibility graph in a binary search tree allows for

on-line computation

Overall we intend this thesis to promote divergent thinking, as not

every problem requires the same solution. We introduced a simple

and efficient method for source separation and gave some indication
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on how to modify it to suit different music recording scenarios. Its

flexibility should allow, and hopefully inspire, the reader to device

novel efficient modifications for other challenging applications. We

then took a step further by re-defining the working space introduc-

ing graph theory to the model. This shift in paradigm brought a new

perspective and so new ideas. The graph representations presented

are efficient, non-parametric and deterministic. The thinking-space

created, backed-up by a well established field in mathematics, chal-

lenges the latest trend of black-box thinking; and so one can’t help

but wonder: could graph theory shed some light on the current deep

learning state-of-the-art? Is the new audio standard representation

going to be graph based? Are we heading towards graph signal pro-

cessing? Only time will tell, but, as a great scientist once said, the

important thing is to never stop questioning.



Part V

A P P E N D I X



A
C O M P L E X I T Y A N A LY S I S F O R S H I F T I N VA R I A N T

K A M

Table 8: Notation for complexity analysis

notation dimension

Input mixture magnitude Xq F⇥ T

Frames to be processed �A ✓ Xq F⇥ TA

Rest of frames to be compared with �B = Xq\ �A F⇥ TB

Table 9: KAM baseline method complexity

operation dimension complexity

Frame-wise distance D(�A,�B) TB ⇥ TA O(FTATB)

Find k closest frames sort TB ⇥ TA O(TATBlog(TB))

total complexity : O(T2(F+ log(T)))

Table 10: KAM shift invariant complexity

operation dimension complexity

Iterate over shifts for every shift � : �

Frame-wise distance –> D(�A,�B) TB ⇥ TA O(�FTATB)

Save minimum distance and its shift –> minimum search TB ⇥ TA O(�TATB)

Find k closest frames sort TB ⇥ TA O(TATBlog(TB))

Shift every k-NN for alignment shift k⇥ F⇥ TA O(kfTA)

total complexity : O(T2(F2 + log(T)))
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Table 11: KAM shift invariant acceleration complexity

operation dimension complexity

Specmurt FhXqi F⇥ T O(TFlog(F))

Frame-wise distance D(�A,�B) TB ⇥ TA O(�(F/2)TATB)

Find k closest frames sort TB ⇥ TA O(TATBlog(TB))

Specmurt analysis FhIFh.i
IFh.ii k⇥ F⇥ TA O(kTAFlog(F))

Find optimal shift maximum k⇥ F⇥ TA O(kFTA)

Shift every k-NN for alignment shift k⇥ F⇥ TA O(kfTA)

total complexity : O(T2(F+ log(T))) +O(FTlog(F))
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